版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1042.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.A.1个 B.2个 C.3个 D.4个3.不等式组的解集在数轴上可表示为()A. B. C. D.4.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A. B. C. D.5.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.326.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是()A. B. C. D.7.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.28.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A. B. C. D.9.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+50010.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是A.4 B. C.5 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.将多项式因式分解的结果是.12.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是_____.13.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.14.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.15.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.16.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.三、解答题(共8题,共72分)17.(8分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?18.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?19.(8分)如图,菱形中,分别是边的中点.求证:.20.(8分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?21.(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.22.(10分)如图,在△ABC中,AB>AC,点D在边AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC=5,点D是AC的中点,求DE的长.23.(12分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.24.已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,
故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正确;∵BC=4,CD=4,∴BC=CD,故③正确;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、A【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.4、A【解析】试题分析:观察图形可知,该几何体的主视图是.故选A.考点:简单组合体的三视图.5、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6、B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.7、D【解析】
解不等式得到x≥m+3,再列出关于m的不等式求解.【详解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣1的解集为x≥4,∴m+3=4,解得m=1.故选D.考点:不等式的解集8、B【解析】
先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.9、A【解析】
设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10、A【解析】
作于利用直角三角形30度角的性质即可解决问题.【详解】解:作于H.
垂直平分线段AB,
,
,
,
,
,
,
,,
,
故选A.【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题(本大题共6个小题,每小题3分,共18分)11、m(m+n)(m﹣n).【解析】试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).考点:提公因式法与公式法的综合运用.12、k≤.【解析】
分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.【详解】当k=1时,原方程为-x+2=1,解得:x=2,∴k=1符合题意;当k≠1时,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.综上:k的取值范围是k≤.故答案为:k≤.【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键.13、【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴这圈金属丝的周长最小为2AC=4dm.
故答案为:4dm【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.14、5【解析】
根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则318=x所以另一段长为18-3=15,因为15÷3=5,所以是第5张.故答案为:5.【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.15、6【解析】试题分析:设所求正n边形边数为n,则120°n=(n﹣2)•180°,解得n=6;考点:多边形内角与外角.16、1【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【详解】连结BD,如图,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(共8题,共72分)17、(1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.本题解析:解:(1)若7.5x=70,得x=>4,不符合题意;则5x+10=70,解得x=12.答:工人甲第12天生产的产品数量为70件.(2)由函数图象知,当0≤x≤4时,P=40,当4<x≤14时,设P=kx+b,将(4,40)、(14,50)代入,得解得∴P=x+36.①当0≤x≤4时,W=(60-40)·7.5x=150x,∵W随x的增大而增大,∴当x=4时,W最大=600;②当4<x≤14时,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴当x=11时,W最大=845.∵845>600,∴当x=11时,W取得最大值845元.答:第11天时,利润最大,最大利润是845元.点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.18、(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】
(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,,解得:,∴y与x之间的函数关系式为:y=10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵为了让顾客得到更大的实惠,∴x=9,答:这种干果每千克应降价9元;(3)该干果每千克降价x元,商贸公司获得利润是w元,根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w=﹣10(x﹣5)2+2250,∵a=-10,∴当x=5时,故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.19、证明见解析.【解析】
根据菱形的性质,先证明△ABE≌△ADF,即可得解.【详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵点E,F分别是BC,CD边的中点,∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.20、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】
(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.21、(1)证明见解析(2)四边形AFBE是菱形【解析】试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.22、(1)作图见解析;(2)【解析】
(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.【详解】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵点D是AC的中点,∴DE为△ABC的中位线,∴DE=BC=.23、(1)1;(1)≤m<.【解析】
(1)在Rt△ABP中利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电路分析基础》课程教学大纲
- 《公务员制度》课程教学大纲
- 2024年出售旧养牛棚合同范本
- 2024年代耕代种协议书模板范本
- 《餐饮服务与管理》高教版(第二版)5.4中餐宴会服务单元练习卷(解析版)
- 华西护理管理
- 2024年超高压电缆连接件项目成效分析报告
- 2024至2030年中国迷你榨汁机数据监测研究报告
- 2023年放射性核素遥控后装机项目评估分析报告
- 2023年掺铊碘化铯闪烁晶体(CSL(TL))项目成效分析报告
- 2024级高一上期期中测试数学试题含答案
- 01-第一章 区域与区域发展
- 《体育与健康》课程标准(高职)
- 六年级上册《如何写好作文开头和结尾》省公开课获奖课件说课比赛一等奖课件
- 天然气管道保护施工方案
- 丰大高中走进高三十八岁成人仪式工作实施方案
- 《国家中长期教育改革和发展规划纲要》-20211107172134
- 【农村产业融合发展探究的国内外文献综述3300字】
- GB/T 37342-2024国家森林城市评价指标
- 三年级除法竖式300道题及答案
- 某大型工业设备翻新集团企业数字化转型SAP解决方案
评论
0/150
提交评论