版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年.“”这个数据用科学记数法表示为()A. B. C. D..2.下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹3.方程x2﹣kx+1=0有两个相等的实数根,则k的值是()A.2 B.﹣2 C.±2 D.04.若关于x的不等式组无解,则m的取值范围()A.m>3 B.m<3 C.m≤3 D.m≥35.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A. B.3cm C. D.9cm6.下列计算正确的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a37.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–368.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m29.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是()A.且 B. C.且 D.10.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y211.如图图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.12.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C.. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.14.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为____.15.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.16.化简:÷=_____.17.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.18.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.20.(6分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.21.(6分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:购买量x(千克)11.522.53付款金额y(元)a7.51012b(1)由表格得:a=;b=;(2)求y关于x的函数解析式;(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?22.(8分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?23.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.24.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.25.(10分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.26.(12分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.27.(12分)求不等式组的整数解.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】32400000=3.24×107元.
故选C.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2、B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B.3、C【解析】
根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.【详解】∵方程x2﹣kx+1=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故选C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.4、C【解析】
根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.【详解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式组无解,∴2+m≥2m﹣1,∴m≤3,故选C.【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.5、B【解析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于点E,∴,解得CE=cm,CD=3cm.故选B.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.6、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=9b2;选项D,原式=7、D【解析】
根据有理数的乘法法则进行计算即可.【详解】故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.8、D【解析】
首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,∴小石子落在不规则区域的概率为0.65,∵正方形的边长为4m,∴面积为16m2设不规则部分的面积为sm2则=0.65解得:s=10.4故答案为:D.【点睛】利用频率估计概率.9、A【解析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.10、A【解析】
分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.11、A【解析】A.是轴对称图形,是中心对称图形,故本选项正确;B.是中心对称图,不是轴对称图形,故本选项错误;C.不是中心对称图,是轴对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误。故选A.12、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形二、填空题:(本大题共6个小题,每小题4分,共24分.)13、20【解析】
先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.【详解】=40π.
设这个圆锥形纸帽的底面半径为r.
根据题意,得40π=2πr,
解得r=20cm.故答案是:20.【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.14、【解析】
依据旋转的性质,即可得到,再根据,,即可得出,.最后在中,可得到.【详解】依题可知,,,,∴,在中,,,,,.∴在中,.故答案为:.【点睛】本题考查了坐标与图形变化,等腰直角三角形的性质以及含30°角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.15、【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧,线段O3O4四部分构成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC与AB延长线的夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心位置,∴此时⊙O1与AB和BC都相切.则∠O1BE=∠O1BF=60度.此时Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC与水平夹角为60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧.∴的长=×2π×10=πcm.∵四边形O3O4DC是矩形,∴O3O4=CD=40cm.综上所述,圆盘从A点滚动到D点,其圆心经过的路线长度是:(60-)+(40-)+π+40=(140-+π)cm.16、m【解析】解:原式=•=m.故答案为m.17、②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.18、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)DE=CE,理由见解析;(3).【解析】试题分析:(1)证明△ABE∽△ACD,从而得出结论;(2)先证明∠CDE=∠ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.20、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.21、(1)5,1(2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2(3)1.6元.【解析】
(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;(2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;(3)代入(2)的解析式即可解答.【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,∵10÷2=5,∴a=5,b=2×5+5×0.8=1.故答案为a=5,b=1.(2)当0≤x≤2时,设线段OA的解析式为y=kx,∵y=kx的图象经过(2,10),∴2k=10,解得k=5,∴y=5x;当x>2时,设y与x的函数关系式为:y=x+b∵y=kx+b的图象经过点(2,10),且x=3时,y=1,,解得,∴当x>2时,y与x的函数关系式为:y=4x+2.∴y关于x的函数解析式为:;(3)甲农户将8元钱全部用于购买该玉米种子,即5x=8,解得x=1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y=4×5.6+2=24.4元.(8+4×4+2)−24.4=1.6(元).答:如果他们两人合起来购买,可以比分开购买节约1.6元.【点睛】本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.22、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台【解析】
(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;(2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.【详解】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,,解得,,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,由题意得,30a+40(200﹣a)≥7000,解得:a≤100,则最多应购进A种机器人100台.【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.23、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安房屋租赁合同书
- 烤串场地租赁及设备维护合同2024年度
- 铝合金电气设备外壳2024年度加工合同
- 基于二零二四年度市场趋势的营销策略服务合同
- 股权转让协议补充协议模板 范本版3篇
- 孩子抚养权协议书模板
- 二零二四年度体育俱乐部与运动员之间的赞助合同2篇
- 钢管架施工期间劳动力雇佣合同
- 《上感及支气管炎》课件
- 杭州地铁集团有限公司与二零二四年度商铺运营商地铁口商铺租赁合同(含商铺使用性质限制)3篇
- 铰刀解析课件
- Unit7SectionA(3a-3c)教学设计人教版英语九年级全册
- 新质生产力解读课件
- 人教版六年级上册数学《圆》大单元作业设计
- 国家集采药品培训课件
- 盐酸氨溴索喷雾剂-药品临床应用解读
- 王阳明心学完整版本
- 2024年大学试题(大学选修课)-植物知道生命的答案笔试历年真题荟萃含答案
- 生产管理部周报-样板OK
- 生鲜农产品运营方案
- 诊所发展前景分析
评论
0/150
提交评论