版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码64页/总NUMPAGES总页数64页2022-2023学年北京市房山区中考数学专项突破仿真模拟卷(4月)一、选一选(本大题共12小题,每小题4分,共48分)1.7的相反数是()A.7 B.-7 C. D.-2.如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的()A. B. C. D.3.我国每年的淡水为27500亿m3,人均仅居世界第110位,用科学记数法表示27500为()A.275×102 B.27.5×103 C.2.75×104 D.0.275×1054.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.130° B.110° C.70° D.80°5.下列运算正确的是()A.(a5)2=a10 B.x16÷x4=x4 C.2a2+3a2=5a4 D.b3•b3=2b36.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度后,点的坐标是()A.(3,1) B.(-3,-1) C.(3,-1) D.(-3,1)7.如图所示图形中,既是轴对称图形,又是对称图形是()A.B.C.D.8.如图所示,用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是().A.0.2 B.0.3 C.0.4 D.0.59.解分式方程分以下四步,其中错误的一步是()A.方程两边分式的最简公分母是B.方程两边都乘以,得整式方程C.解这个整式方程,得D.原方程的解为10.如图,正方形ABCD的边长为4,点E在对角线BD上,且,EF⊥AB,垂足为F,则EF的长为A.1 B. C. D.11.把所有正偶数从小到大排列,并按如下规律分组:组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24第四组:26,28,30,32,34,36,38,40……则现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A10=(2,3),则A2018=()A(31,63) B.(32,17) C.(33,16) D.(34,2)12.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)13.计算:|﹣5+3|的结果是_____.14.分解因式:3a2﹣12=___.15.已知一组数据0,2,x,4,5的众数是4,那么这组数据的中位数是____.16.如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=_____.17.将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则菱形AECF的周长为______.18.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象上,有一动点P,以点P为圆心,以一个定值R为半径作⊙P在点P运动过程中,若⊙P与直线y=-x+4有且只有3次相切时,则定值R为________.三、解答题;(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:+2﹣1﹣2cos60°+(π﹣3)020.解一元没有等式组:,并将解集在数轴上表示出来.21.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.22.为了奖励班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.(1)每副乒乓球拍和羽毛球拍的单价各是多少元?(2)若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?23.我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪,并将结果分成四类,A:特别好;B:好;C:一般;D:较差;并将结果绘制成以下两幅没有完整的统计图,请你根据统计图下列问题:(1)本次中,张老师一共了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费.甲公司:每月养护费用y(元)与绿化面积x(平方米)是函数关系,如图所示.乙公司:绿化面积没有超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示y与x的函数解析式:(没有要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.25.如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于点D,过点D作DE∥AB交CA延长线于点E,连接AD、BD(1)△ABD的面积是______;(2)求证:DE是⊙O的切线.(3)求线段DE的长.26.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积的矩形,多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积,随后,他通过证明验证了其正确性,并得出:矩形的面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的值为.(用含a,h的代数式表示)灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且ta=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积的矩形PQMN,求该矩形的面积.27.如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点是轴上的一点,且以为顶点的三角形与相似,求点的坐标;(3)如图2,轴玮抛物线相交于点,点是直线下方抛物线上的动点,过点且与轴平行的直线与,分别交于点,,试探究当点运动到何处时,四边形的面积,求点的坐标及面积;(4)若点为抛物线的顶点,点是该抛物线上的一点,在轴,轴上分别找点,,使四边形的周长最小,求出点,的坐标.2022-2023学年北京市房山区中考数学专项突破仿真模拟卷(4月)一、选一选(本大题共12小题,每小题4分,共48分)1.7的相反数是()A.7 B.-7 C. D.-【正确答案】B【分析】根据只有符号没有同的两个数互为相反数,可得答案.【详解】7的相反数是−7,故选B.此题考查相反数,解题关键在于掌握其定义.2.如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的()A. B. C. D.【正确答案】D【详解】从左面看这个几何体有一列,二层,所以从左面看得到的平面图形是D,故选D.3.我国每年的淡水为27500亿m3,人均仅居世界第110位,用科学记数法表示27500为()A.275×102 B.27.5×103 C.2.75×104 D.0.275×105【正确答案】C【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.所以27500=2.75×104,故选C.4.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.130° B.110° C.70° D.80°【正确答案】B【详解】因为a∥b,所以∠1=180°-∠2,所以∠2=180°-∠1=180°-70°=110°,故答案为B.5.下列运算正确是()A.(a5)2=a10 B.x16÷x4=x4 C.2a2+3a2=5a4 D.b3•b3=2b3【正确答案】A【详解】试题分析:根据幂乘方底数没有变指数相乘,同底数幂的除法底数没有变指数相减,合并同类项系数相加字母及指数没有变,同底数幂的乘法底数没有变指数相加,可得答案.A、幂的乘方底数没有变指数相乘,故A正确;B、同底数幂的除法底数没有变指数相减,故B错误;C、合并同类项系数相加字母及指数没有变,故C错误;D、同底数幂的乘法底数没有变指数相加,故D错误;考点:(1)同底数幂的除法;(2)合并同类项;(3)同底数幂的乘法;(4)幂的乘方与积的乘方.6.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度后,点的坐标是()A.(3,1) B.(-3,-1) C.(3,-1) D.(-3,1)【正确答案】C【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【详解】解:将点A(-1,2)的横坐标加4,纵坐标减3后的点的坐标为(3,-1),故选:C.本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.如图所示图形中,既是轴对称图形,又是对称图形的是()A. B. C. D.【正确答案】C【详解】解:A、是轴对称图形,没有是对称图形.故错误;B、没有是轴对称图形,是对称图形.故错误;C、既是轴对称图形,又是对称图形.故正确;D、是轴对称图形,没有是对称图形.故错误.故选C8.如图所示,用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是().A.0.2 B.0.3 C.0.4 D.0.5【正确答案】B【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【详解】∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3.故选B.9.解分式方程分以下四步,其中错误的一步是()A.方程两边分式的最简公分母是B.方程两边都乘以,得整式方程C.解这个整式方程,得D.原方程的解为【正确答案】D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:分式方程的最简公分母为(x−1)(x+1),方程两边乘以(x−1)(x+1),得整式方程2(x−1)+3(x+1)=6,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.如图,正方形ABCD的边长为4,点E在对角线BD上,且,EF⊥AB,垂足为F,则EF的长为A.1 B. C. D.【正确答案】C【详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=225°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°.在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠ADE.∴AD=DE=4.∵正方形的边长为4,∴BD=.∴BE=BD-DE=.∵EF⊥AB,∠ABD=45°,∴△BEF等腰直角三角形.∴EF=BE==.故选:C.11.把所有正偶数从小到大排列,并按如下规律分组:组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24第四组:26,28,30,32,34,36,38,40……则现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A10=(2,3),则A2018=()A.(31,63) B.(32,17) C.(33,16) D.(34,2)【正确答案】B【详解】2018是第1009个数,设2018在第n组,由2+4+6+8+…+2n=n(n+1),当n=31时,n(n+1)=992;当n=32时,n(n+1)=1056;故第1009个数在第32组,第32组的个数为2×992+2=1986,则2018是(+1)=17个数.则A2016=(32,17).故选B.12.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.【正确答案】A【详解】试题分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,则y=4×()=,∵AE<AD,∴x<3,综上可得:(0<x<3).故选A.考点:动点问题的函数图象;动点型.二、填空题(本大题共6小题,每小题4分,共24分)13.计算:|﹣5+3|的结果是_____.【正确答案】2【详解】解:|﹣5+3|=|﹣2|=2.故答案为2.14.分解因式:3a2﹣12=___.【正确答案】3(a+2)(a﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).15.已知一组数据0,2,x,4,5的众数是4,那么这组数据的中位数是____.【正确答案】4【详解】解:∵数据0,2,x,4,5的众数是4,∴x=4,这组数据按照从小到大的顺序排列为:0,2,4,4,5,则中位数为:4.故答案为4.16.如图,△ABC顶点都是正方形网格中的格点,则tan∠ABC=_____.【正确答案】【详解】∵AB所在的直角三角形的两直角边分别为:2,4,∴AB=.∴sin∠ABC=.17.将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则菱形AECF的周长为______.【正确答案】8【分析】试题分析:根据折叠图形可得∠BCE=∠OCE,根据菱形的性质可得∠FCO=∠ECO,则∠FCO=∠ECO=∠BCE,根据矩形的性质可得∠FCO=∠ECO=∠BCE=30°,则CE=2BE,根据菱形性质可得AE=CE=2BE,∵AB=3,∴AE+BE=2BE+BE=3,则BE=1,则AE=2.周长=4×2=8.考点:菱形的性质、折叠图形【详解】请在此输入详解!18.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象上,有一动点P,以点P为圆心,以一个定值R为半径作⊙P在点P运动过程中,若⊙P与直线y=-x+4有且只有3次相切时,则定值R为________.【正确答案】【分析】如图,过点P作PQ⊥AB于点Q,过点P作PR∥x轴交AB于点R,则△PQR是等腰直角三角形,PR=PQ,根据反比例函数的轴对称性,⊙P与直线y=-x+4有且只有3次相切时,线段PQ在象限的角平分线上,由此计算可得解.【详解】如图,过点P作PQ⊥AB于点Q,过点P作PR∥x轴交AB于点R,则△PQR是等腰直角三角形,PR=PQ,根据反比例函数的轴对称性,⊙P与直线y=-x+4有且只有3次相切时,线段PQ在象限的角平分线上,所以Q(2,2)设P(a,)(a>0),则a=,解得x=,所以P(,),得R(4-,),则PR=4-,所以PQ===,故答案为.点睛:本题考查反比例函数图象上点的特征,切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题;(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:+2﹣1﹣2cos60°+(π﹣3)0【正确答案】【分析】本题涉及零指数幂、负整数指数幂、三角函数值、二次根式化简等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=3+﹣2×+1=本题是一道关于零指数幂、负整数指数幂、三角函数值、二次根式化简等知识点的计算题目,熟记各知识点是解题的关键.20.解一元没有等式组:,并将解集在数轴上表示出来.【正确答案】﹣1<x≤4,数轴见解析.【详解】分析:分别求出各没有等式的解集,再求出其公共解集,并在数轴上表示出来即可.详解:由①得,x>-1,由②得,x≤4,故此没有等式组的解集为:-1<x≤4.在数轴上表示为:点睛:本题考查的是解一元没有等式组,熟知“同大取大;同小取小;大小小大中间找;小小找没有到”的原则是解答此题的关键.21.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【正确答案】证明过程见解析【详解】试题分析:由点C是AE的中点,可得AC=CE,根据已知条件利用SAS判定△ABC≌△CDE,根据全等三角形的性质即可证得结论.试题解析:证明:∵点C是AE的中点,∴AC=CE.在△ABC和△CDE中,AC=CE,∠A=∠ECD,AB=CD,∴△ABC≌△CDE(SAS),∴∠B=∠D.22.为了奖励班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.(1)每副乒乓球拍和羽毛球拍的单价各是多少元?(2)若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?【正确答案】(1)一副乒乓球拍28元,一副羽毛球拍60元(2)共320元.【详解】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.23.我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪,并将结果分成四类,A:特别好;B:好;C:一般;D:较差;并将结果绘制成以下两幅没有完整的统计图,请你根据统计图下列问题:(1)本次中,张老师一共了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【正确答案】:(1)20,2,1;(2)见解析.(3),表格见解析.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被的A类和D类学生男女生人数列表即可得出答案.【详解】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为20,2,1;(2)如图所示:(3)根据张老师想从被的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:利用图表可知所选两位同学恰好是一位男同学和一位女同学的概率为:.24.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费.甲公司:每月的养护费用y(元)与绿化面积x(平方米)是函数关系,如图所示.乙公司:绿化面积没有超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(没有要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【正确答案】(1)y=5x+400.(2)乙.【详解】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.25.如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于点D,过点D作DE∥AB交CA延长线于点E,连接AD、BD(1)△ABD的面积是______;(2)求证:DE是⊙O的切线.(3)求线段DE的长.【正确答案】25(2)见解析(3)【详解】整体分析:(1)判断△ABD是等腰直角三角形后,再求它的面积;(2)连接OD,证明∠ODE=90°;(3)过点A作AF⊥DE于点F,用tan∠EAF=tan∠CBA求EF即可.解:(1)∵AB是直径,∴∠ACB=90°,∵CD平分∠ACB,∴AD=BD,∴S△ABD=×10×5=25;(2)如图,连接OD,∵AB为直径,CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∵DE∥AB,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10,AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴,即,∴EF=15,∴DE=DF+EF=+5=26.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积的矩形,多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积,随后,他通过证明验证了其正确性,并得出:矩形的面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且ta=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积的矩形PQMN,求该矩形的面积.【正确答案】【探索发现】;【拓展应用】;【灵活应用】该矩形的面积为720;【实际应用】该矩形的面积为1944cm2.【分析】【探索发现】由中位线知EF=BC、ED=AB、由可得;【拓展应用】由△APN∽△ABC知,可得PN=a-PQ,设PQ=x,由S矩形PQMN=PQ•PN═-(x-)2+,据此可得;【灵活应用】添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】延长BA、CD交于点E,过点E作EH⊥BC于点H,由ta=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【详解】【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a-PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a-x)=-x2+ax=-(x-)2+,∴当PQ=时,S矩形PQMN值为;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20,DH=16,∴AE=EH,CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵ta=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵ta==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.27.如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点是轴上的一点,且以为顶点的三角形与相似,求点的坐标;(3)如图2,轴玮抛物线相交于点,点是直线下方抛物线上的动点,过点且与轴平行的直线与,分别交于点,,试探究当点运动到何处时,四边形的面积,求点的坐标及面积;(4)若点为抛物线的顶点,点是该抛物线上的一点,在轴,轴上分别找点,,使四边形的周长最小,求出点,的坐标.【正确答案】(1)y=x2﹣4x﹣5,(2)D的坐标为(0,1)或(0,);(3)当t=时,四边形CHEF的面积为.(4)P(,0),Q(0,﹣).【详解】试题分析:(1)根据待定系数法直接抛物线解析式;(2)分两种情况,利用相似三角形的比例式即可求出点D的坐标;(3)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出值;(4)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.试题解析:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴,∴,∴抛物线的表达式为y=x2﹣4x﹣5,(2)如图1,令x=0,则y=﹣5,∴C(0,﹣5),∴OC=OB,∴∠OBC=∠OCB=45°,∴AB=6,BC=5,要使以B,C,D为顶点的三角形与△ABC相似,则有或,①当时,CD=AB=6,∴D(0,1),②当时,∴,∴CD=,∴D(0,),即:D的坐标为(0,1)或(0,);(3)设H(t,t2﹣4t﹣5),∵CE∥x轴,∴点E的纵坐标为﹣5,∵E在抛物线上,∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,∴E(4,﹣5),∴CE=4,∵B(5,0),C(0,﹣5),∴直线BC的解析式为y=x﹣5,∴F(t,t﹣5),∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,∵CE∥x轴,HF∥y轴,∴CE⊥HF,∴S四边形CHEF=CE•HF=﹣2(t﹣)2+,当t=时,四边形CHEF的面积为.(4)如图2,∵K为抛物线的顶点,∴K(2,﹣9),∴K关于y轴的对称点K'(﹣2,﹣9),∵M(4,m)在抛物线上,∴M(4,﹣5),∴点M关于x轴的对称点M'(4,5),∴直线K'M'的解析式为y=x﹣,∴P(,0),Q(0,﹣).考点:二次函数综合题.2022-2023学年北京市房山区中考数学专项突破仿真模拟卷(4月)一、选一选1.()A. B. C. D.2.某种花粉的直径约为0.000036毫米,数据0.000036用科学记数法表示为()A.3.6×10﹣6 B.0.36×10﹣5 C.3.6×10﹣5 D.0.36×10﹣63.如图所示几何体的左视图是()A.(A) B.(B) C.(C) D.(D)4.下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3 C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45° B.60° C.75° D.82.5°6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法没有正确的是()A. B.C.点是的外心 D.7.某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11xy21A.22,3 B.22,4 C.21,3 D.21,48.在平面直角坐标系中,点是线段上一点,以原点为位似把放大到原来的两倍,则点的对应点的坐标为()A B.或C. D.或9.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的值为-1,则的值为()A.3或6 B.1或6 C.1或3 D.4或610.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成对称的点的极坐标表示没有正确的是()A. B.C. D.11.已知关于x的一元二次方程有两个没有相等的实数根x1,x2.若,则m的值是()A.2 B.﹣1 C.2或﹣1 D.没有存在12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B. C. D.二、填空题(本大题共6小题,共18分,只要求填写结果,每小题填对得3分)13.因式分解:(x+2)x﹣x﹣2=_____.14.当____________时,解分式方程会出现增根.15.用教材中计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是_____.16.如图,正方形的边长为1,点与原点重合,点在轴的正半轴上,点在轴的负半轴上将正方形绕点逆时针旋转至正方形的位置,与相交于点,则的坐标为____________.17.如图,点的坐标为,过点作没有轴的垂线交直于点以原点为圆心,的长为半径断弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点;…按此作法进行下去,则的长是____________.
18.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行_____小时即可到达.(结果保留根号)三、解答题19.如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.20.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.21.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面没有完整的统计图.(1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.22.如图,BD为△ABC外接圆⊙O直径,且∠BAE=∠C(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.(1)分别求每台型,型挖掘机一小时挖土多少立方米?(2)若没有同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用没有超过12960元.问施工时有哪几种调配,并指出哪种调配的施工费用,费用是多少元?24.如图1,在中,于点的垂直平分线交于点,交于点,,.(1)如图2,作于点,交于点,将沿方向平移,得到,连接.①求四边形的面积;②直线上有一动点,求周长的最小值.(2)如图3.延长交于点.过点作,过边上的动点作,并与交于点,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长.25.如图1,抛物线与轴交于点和点,与轴交于点,抛物线的顶点为轴于点.将抛物线平移后得到顶点为且对称轴为直的抛物线.(1)求抛物线的解析式;(2)如图2,在直线上是否存在点,使是等腰三角形?若存在,请求出所有点的坐标:若没有存在,请说明理由;(3)点为抛物线上一动点,过点作轴平行线交抛物线于点,点关于直线的对称点为,若以为顶点的三角形与全等,求直线的解析式.2022-2023学年北京市房山区中考数学专项突破仿真模拟卷(4月)一、选一选1.()A. B. C. D.【正确答案】B【详解】分析:根据值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了值的性质:一个正数的值是它本身;一个负数的值是它的相反数;0的值是0.2.某种花粉的直径约为0.000036毫米,数据0.000036用科学记数法表示为()A.3.6×10﹣6 B.0.36×10﹣5 C.3.6×10﹣5 D.0.36×10﹣6【正确答案】C【详解】值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法没有同的是其所使用的是负指数幂,指数由原数左边起个没有为零的数字前面的0的个数所决定.解:0.000036=3.6×10﹣5.故选:C.本题考查用科学记数法表示较小的数,解题的关键是确定n的值.3.如图所示的几何体的左视图是()A.(A) B.(B) C.(C) D.(D)【正确答案】D【详解】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.详解:从左面看可得矩形中间有一条横着的虚线.故选D.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3 C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a3【正确答案】C【详解】【分析】根据同底数幂乘法,同底数幂除法,合并同类项法则,积的乘方法则逐项进行计算即可得.【详解】A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a﹣(b﹣a)=2a﹣b,故C正确;D、(﹣a)3=﹣a3,故D错误,故选C.本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.5.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45° B.60° C.75° D.82.5°【正确答案】C【分析】直接利用平行线的性质已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选:C.本题主要考查了平行线的性质,正确作出辅助线是解题关键.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法没有正确的是()A. B.C.点是的外心 D.【正确答案】D【详解】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11xy21A.22,3 B.22,4 C.21,3 D.21,4【正确答案】D【详解】【分析】先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.【详解】∵共有10个数据,∴x+y=5,又该队队员年龄中位数为21.5,即2.15=,∴x=3、y=2,则这组数据的众数为21,平均数为=22,所以方差为×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,故选D.本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.8.在平面直角坐标系中,点是线段上一点,以原点为位似把放大到原来的两倍,则点的对应点的坐标为()A. B.或C. D.或【正确答案】B【详解】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的值为-1,则的值为()A.3或6 B.1或6 C.1或3 D.4或6【正确答案】B【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的值为0与题意没有符,可得出该情况没有存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【详解】解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的值为0,没有符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.10.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成对称的点的极坐标表示没有正确的是()A. B.C D.【正确答案】D【详解】分析:根据对称的性质解答即可.详解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P关于点O成对称的点Q可得:点Q的极坐标为(3,240°),(3,-120°),(3,600°),故选D.点睛:此题考查对称的问题,关键是根据对称的性质解答.11.已知关于x的一元二次方程有两个没有相等的实数根x1,x2.若,则m的值是()A.2 B.﹣1 C.2或﹣1 D.没有存在【正确答案】A【分析】先由二次项系数非零及根的判别式,得出关于m的没有等式组,解之得出m的取值范围,再根据根与系数的关系可得出,,,即可求出m的值.【详解】解:∵关于x的一元二次方程mx2−(m+2)x+=0有两个没有相等的实数根x1、x2,∴,解得:m>−1且m≠0,∵x1、x2是方程mx2−(m+2)x+=0的两个实数根,∴,,∵,∴,∴m=2或−1,∵m>−1,∴m=2.故选:A.本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式,找出关于m的没有等式组;(2)牢记,.12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B. C. D.【正确答案】D【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【详解】当0≤t<2时,S=×2t××(4﹣t)=﹣t2+2t;当2≤t<4时,S=×4××(4﹣t)=﹣t+4;只有选项D的图形符合,故选D.本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形是解决本题的关键.二、填空题(本大题共6小题,共18分,只要求填写结果,每小题填对得3分)13.因式分解:(x+2)x﹣x﹣2=_____.【正确答案】(x+2)(x﹣1)【分析】通过提取公因式(x+2)进行因式分解即可.【详解】解:(x+2)x﹣x﹣2=(x+2)x-(x+2)=(x+2)(x﹣1),故答案为(x+2)(x﹣1).考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.14.当____________时,解分式方程会出现增根.【正确答案】2【详解】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是_____.【正确答案】34+9【详解】【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.【详解】由题意知输入的值为32=9,则输出的结果为[(9+3)﹣]×(3+)=(12﹣)×(3+)=36+12﹣3﹣2=34+9,故答案为34+9.本题主要考查计算器﹣基础知识,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则.16.如图,正方形的边长为1,点与原点重合,点在轴的正半轴上,点在轴的负半轴上将正方形绕点逆时针旋转至正方形的位置,与相交于点,则的坐标为____________.【正确答案】【详解】分析:连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.详解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(-1,),故答案为(-1,).点睛:本题主要考查旋转的性质、正方形的性质,解题的关键是掌握旋转变换的没有变性与正方形的性质、全等三角形的判定与性质及三角函数的应用.17.如图,点的坐标为,过点作没有轴的垂线交直于点以原点为圆心,的长为半径断弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点;…按此作法进行下去,则的长是____________.
【正确答案】【分析】先根据函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推,总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解.【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2=,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是.故答案为.本题主要考查了函数图象上点的坐标特征,做题时要注意数形思想的运用,是各地的中考,学生在平常要多加训练,属于中档题.18.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行_____小时即可到达.(结果保留根号)【正确答案】【分析】如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,通过解直角△AQP、直角△BPQ求得PQ的长度,即MN的长度,然后通过解直角△BMN求得BM的长度,则易得所需时间.【详解】如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,在直角△AQP中,∠PAQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里),所以BQ=PQ﹣90.在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°=PQ(海里),所以PQ﹣90=PQ,所以PQ=45(3+)(海里),所以MN=PQ=45(3+)(海里),在直角△BMN中,∠MBN=30°,所以BM=2MN=90(3+)(海里),所以(小时),故.本题考查的是解直角三角形的应用,此题是一道方向角问题,航海中的实际问题,将解直角三角形的相关知识有机,体现了数学应用于实际生活的思想.三、解答题19.如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.【正确答案】(1)k=3;(2)S△AOB=.【详解】分析:(1)先求出B点的坐标,再代入反比例函数解析式求出即可;(2)先求出直线与x轴、y轴的交点坐标,再求出即可.详解:(1)点在直线上,,解得,,反比例函数的图象也点,,解得;(2)设直线分别与轴,轴相交于点,点,当时,即,,当时,,,点在直线上,.即,.点睛:本题考查了用待定系数法求反比例函数的解析式,反比例函数与函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.20.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【正确答案】(1)证明见解析;(2)sin∠EBF=.【详解】【分析】(1)通过证明△ABF≌△DAE得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x﹣2=4,然后利用勾股定理计算出BE,利用正弦的定义求解.(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF=.本题考查了正方形的性质、解直角三角形等,熟知正方形具有四边形、平行四边形、矩形、菱形的一切性质,会运用全等三角形的知识解决线段相等问题是解题的关键.21.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况,小莹随机抽查了所住小区n户家庭月用水量,绘制了下面没有完整的统计图.(1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.【正确答案】(1)n=20,补全图形见解析;(2)这20户家庭的月平均用水量为6.95m3,估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为231户;(3)选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为.【详解】分析:(1)根据月用水量为9m3和10m3的户数及其所占百分比可得总户数,再求出5m3和8m3的户数即可补全图形;(2)根据加权平均数的定义计算可得月平均用水量,再用总户数乘以样本中低于月平均用水量的家庭户数所占比例可得;(3)列表得出所有等可能结果,从中找到满足条件的结果数,根据概率公式计算可得.详解:(1)n=(3+2)÷25%=20,月用水量为8m3的户数为20×55%-7=4户,月用水量为5m3的户数为20-(2+7+4+3+2)=2户,补全图形如下:(2)这20户家庭的月平均用水量为=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;(3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,列表如下:abcdea(b,a)(c,a)(d,a)(e,a)b(a,b)(c,b)(d,b)(e,b)c(a,c)(b,c)(d,c)(e,c)d(a,d)(b,d)(c,d)(e,d)e(a,e)(b,e)(c,e)(d,e)由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合A或B的结果数目m,然后利用概率公式求A或B的概率.也考查了统计图和用样本估计总体.22.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.【正确答案】(1)证明见解析;(2)AD=2.【分析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025民间个人向个人借款合同
- 2025年度知识产权保密协议范本(含研发成果)3篇
- 二零二五年度科技园区银行贷款担保协议2篇
- 2025年度农村自建房合同协议书(含空气源热泵安装)
- 二零二五年度农业现代化农村土地承包经营权租赁协议
- 二零二五年度特种设备制造许可证转让合同3篇
- 2025年度饲料行业人才培养合作协议详尽版3篇
- 二零二五年度XX教育机构收取管理费服务协议3篇
- 2025年二零二五企业研发基地场地租赁合作协议3篇
- 2025年度码头租赁及集装箱装卸业务一体化合作协议3篇
- 项目驻场服务合同协议书
- 终止合同告知函 委婉
- 11SG102-3 钢吊车梁系统设计图平面表示方法和构造详图
- DL∕T 1901-2018 水电站大坝运行安全应急预案编制导则
- 三年级上册100道口算练习题(各类齐全)
- 电动叉车充电区安全规程
- 全球与中国电动旋转夹爪市场格局分析及前景深度研究报告2024-2030年
- 宋代学者邵康节名著《渔樵问答》译文
- 社会工作行政复习题
- 广东省初级中学学生学籍表
- 体育特长生足球专项测试表
评论
0/150
提交评论