下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理期中复习教案复习目标知识与技能:能应用勾股定理及逆定理解决一些简单的实际问题。问题解决:能综合运用数学知识和方法解决简单的实际问题,提高实践能力,经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。情感态度:使学生认识到数学来自生活,并服务于生活,从而增强学生学数学、用数学的意识,体会勾股定理的文化价值。重点:应用勾股定理及逆定理解决实际问题是本节课的教学重点难点:把实际问题化归成勾股定理的几何模型(直角三角形)则是本节课的教学难点复习过程:一.复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:直角三角形的性质:直角三角形的性质:勾股定理应用:主要用于计算勾股定理应用:主要用于计算勾股定理直角三角形的判别方法::直角三角形的判别方法::若三角形的三边满足则它是一个直角三角形.二、知识点回顾1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.,.2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.3.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题(4)勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长.这里一定要注意找准斜边、直角边;二要熟悉公式的变形:,.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理.4.如何判定一个三角形是直角三角形先确定最大边(如c)验证与是否具有相等关系若=,则△ABC是以∠C为直角的直角三角形;若≠,则△ABC不是直角三角形。5、三角形的三边分别为a、b、c,其中c为最大边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边6、勾股数满足=的三个正整数,称为勾股数如(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17(5)7,24,25(6)9,40,41三、课堂展示例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.例3:已知单位长度为“1”,画一条线段,使它的长为.分析:是无理数,用以前的方法不易准确画出表示长为的线段,但由勾股定理可知,两直角边分别为________的直角三角形的斜边长为.例4、如图1,在△ABC中,AD是高,且,求证:△ABC为直角三角形。四.随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.3,4,5C.3,4,5D.4,7,82.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍3.三个正方形的面积如图1,正方形A的面积为()A.6B.36C.64D.4.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A.6cmB.8.5cmC.cmD.cm5.在△ABC中,三条边的长分别为a,b,c,a=n2-1,b=2n,c=n2+1(n>1,且n为整数),这个三角形是直角三角形吗?若是,哪个角是直角?五.课后练习1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.50cmB.100cmC.140cmD.80cm2.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.8cmB.10cmC.12cmD.14cm3.在△ABC中,∠C=90°,若a=5,b=12,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【课件】部编语文三上14 不会叫的狗【国家级】一
- 学校安全网格化管理培训
- 《隋唐社会生活》课件
- AI服务器BOM表解密报告
- 会计专业认知与职业规划
- 适老智能家居技术路线设计
- 《线性规划研究生》课件
- 压缩空气的安全培训
- 性格的形成和发展微电影分库周欣然
- 社区工作价值观社会工作专业教学案例宝典
- TD/T 1054-2018 土地整治术语(正式版)
- 新能源汽车消防安全培训
- 继发性高血压知识讲解
- 一年级数学计算竞赛试题
- 刮痧治疗糖尿病
- 艺术中国智慧树知到期末考试答案2024年
- 大班安全危险物品我不带
- 心理学史格式塔心理学
- 小学生细菌科普知识
- 可持续建筑技术B智慧树知到期末考试答案2024年
- 医保基金监管知识考试题库300题(含答案)
评论
0/150
提交评论