版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
arXivv[cs.LG]19Jan2023AarXivv[cs.LG]19Jan2023JacobBeck*jacob.beck@cs.ox.ac.ukUniversityofOxfordRistoVuorio*risto.vuorio@cs.ox.ac.ukUniversityofOxfordEvanZheranLiuZhengXiongLuisaZintgraf十evanliu@zheng.xiong@cs.ox.ac.ukzintgraf@StanfordUniversityUniversityofOxfordUniversityofOxfordChelseaFinncbfinnChelseaFinncbfinn@shimon.whiteson@cs.ox.ac.ukUniversityofOxfordAbstractWhiledeepreinforcementlearning(RL)hasfueledmultiplehigh-profilesuc-dbackfrommorewidespreadadoptionbynywe1IntroductioninforcementlearningmetaRLisafamilyofmachinelearningMLmethodsthatlearntoreinforcementlearn.Thatis,meta-RLusessample-inefficientMLtolearnsample-efficientRLtedasamachinelearningproblemforasignicantperiodoftimeIntriguingly,32Background2.1Reinforcementlearningtoastheagent’senvironment.AnMDPisdefinedbyatupleM=〈s,A,P,P0,R,γ,T),wheresisthesetofstates,Athesetofactions,P(st+11st,at):sxAxs→R+theprobabilityoftransitioningfromstatesttostatest+1aftertakingactionat,P0(s0):s→R+isadistributionApolicyisafunctionπ(a1s):sxA→R+thatmapsstatestoactionprobabilities.Thisway,TPPsat1st)P(st+11st,at).t=0J(π)=Eτ~P(τ)┌t0γtrt┐,ltipleepisodesaregathered.IfHepisodeshavebeengathered,thenD={τh}=0isallofthedatadeneanRLalgorithmasthefunctionf(D):((sxAxR)T)H→Φ.Inpractice,thedatamayincludeath2.2Meta-RLdefinitionisinsteadtolearn(partsof)analgorithmfusingmachinelearning.WhereRLlearnsapolicy,fthehumanfromdirectlydesigningandimplementingtheRLalgorithmsmtomaximizeameta-RLobjective.Hence,fθoutputstheparametersofπφdirectly:φ=fθ(D).Werefertothepolicyπφasthebasepolicywithbaseparametersφ.Here,Disameta-trajectoryylerdinglywemaycalltheouterloopparametersandortheesupportedbyanysetoftasksHoweverorsandAtobesharedbetweenallofthetasksandthetaskstoonly41s-s-1s-d方p1d方1s-s-1s-d方p1d方p1s-s-1sssssdd方p-s-s-11ittedinsweetheτeDK∶H7(θ)=EMi~p(M)┌ED┌G(τ)f│θ,Mi┐┐,τeDK∶HwhereG(τ)isthediscountedreturnintheMDPMiandHisthelengthofthetrial,orthetask-erloopfθ(D).2.3ExamplealgorithmsMetaLearningMAMLwhichusesmetagradientsandFastRLviaSlowRL(RL2),whichusesrecurrentneuralnetworks[46,239].Manymeta-RLalgorithmsbuildonsimilartothoseusedinMAMLandRLwhichmakesthemexcellentMAMLManydesignsoftheinner-loopalgorithmfθbuildonexistingRLalgorithmsandusemeta-learningtoimprovethem.MAML[55]isaninfluentialdesignfollowingthispattern.ItsrsandithgradientdescenttobeagoodstartingpointforlearningontasksfromthetaskdistributionWhenadaptingtoanewtask,MAMLcollectsdatastepforataskMi~p(M):φ=f(D,φ0)=φ0+α5φОJˆ(D,πφО),5ptuallyrightwhereJˆ(D,πφО)isanestimateofthereturnsofthepolicyπφОforthetaskMiandαistheφ=φ0+β5φОJD1),Mi~p(M)whereπ1isthepolicyfortaskiupdatedoncebytheinner-loop,βisalearningrate,andientDepolicyforvariancereductionhighervaluesofKinitmeralwithKuptodifferencesinthediscountingTooptimizemtheRNNHoweverMAMLcannottrivially6Multi-taskMulti-task-RL2[46,239],MAML[55]-LPGLPGMetaGenRL9]2.4ProblemCategoriesWhilethegivenproblemsettingappliestoallofmetaRLdistinctclustersintheliteraturehaveultitasksettingInthissettinganagentmustquicklyrringtrainingMethodsforthismanyshotsingletasksettingtendto7Meta-LearningFew-ShotMeta-RLMeta-LearningAdaptationGoal MDP1 MDP2 MDP3Rl2,L2RL,VariBADMeta-Learning MDP1 MDP2 MDP3 MAML,DREAMZero-ShotPerformwellfromstartMethods:Few-ShotFreeexplorationphaseMethods:Learnnewtaskswithinafewsteps/episodesOverMultiple(similar)tasks......Meta-LearningMany-ShotMetaMeta-LearningGoalLearnnewtasksbetterthanstandardRLalgorithmsLPG,MetaGenRLMeta-LearningOverMultiple(diverse)tasks MDP1 MDP2 MDP3SolutionsMethods:AdaptationGoalAcceleratestandardRLalgorithmsMeta-LearningOverwindowsinasingletask.(Noreset)SolutionsMethods:STACX,FRODOMeta-LearningAdaptationAdaptationAdaptationMDPMDP18ParameterizedpolicygradientsMAML-likeFinnetal.[55],Lietal.[124],Sungetal.[219],Vuorioetal.[235],ZintgrafMAML-likeDistributionalMAMLndMeta-gradientestimationFoersteretal.[60],Al-Shedivatetal.[207],Stadieetal.[216],Liuetal.[133],Maoetal.[139],Fallahetal.[52],Tang[222],andVuorioetal.[234]BlackboxnerloopHeessetal.[88],Duanetal.[46],Wangetal.[239],Humpliketal.[95],Fakooretal.[51],Yanetal.[256],Zintgrafetal.[281],Liuetal.[130],andZintgrafetal282]AttentionMishraetal.[150],Fortunatoetal.[62],Emukpereetal.[49],Ritteretal.[190],Wangetal.[240],andMelo[141]HypernetworksXianetal.[250]andBecketal.[17]TaskInferenceMulti-taskpre-trainingHumpliketal.[95],Kamiennyetal.[104],Raileanuetal.[182],Liuetal.[130],andPengetal.[174]LatentforZhouetal.[278],Raileanuetal.[182],Zintgrafetal.[281],Zhangetal.[268],Zintgrafetal.[282],Becketal.[17],Heetal.[86],andImagawaetal.97]ConstrastivelearningFuetal.[64]rnerwouldacgthis3Few-ShotMeta-RLkinhomekitchensTraininganewereitntocookinitHowevertrainingsuchanagentwithmetaRLinvolvesuniquefew-shotsetting.Recallthatmeta-RLitselflearnsalearningalgorithmfθ.Thisplacesunique•Parameterizedpolicygradientmethodsbuildthestructureofexistingpolicygradiente9PPGMethodBlackBoxMethodGeneralizationeralizationalizationAMLalizationAMLLrereInductivebiasinstructureInductiveInductivebiasinstructureInductivebiasfromdatachallengesOnesuchrningsnsupervision.Inthestandardmeta-RLproblemsetting,rewardsareavailableduringbothmeta-ample,itmaybedifficulttomanuallydesignaninformativetaskdistributionformeta-training,metanges3.1ParameterizedPolicyGradientMethodsMeta-RLlearnsalearningalgorithmfθ,theinner-loop.WecalltheparameterizationoffθthesectionwediscussonewayofparameterizingtheinnerloopthatbuildsinthestructureofexistingstandardRLalgorithms.Parameterizedpolicygradients(PPG)φj+1=fθ(Dj,φj)=φj+αθ5φjJˆθ(Dj,πφj),teverφj+1=φj+αθMθ5φjJˆθ(Dj,πφj)[255,170,58].Whileavaluebased-methodcouldbeusedcanbeupdatedwithback-propagationinaPPGmethodorbyaneuralnetworkinablackboxodslearnafulldistributionoverinitialpolicyparameters,p(φ0)[82,260,242,285,73].Thisterstionfitviavariationalinference[82,73].Moreover,thedistributionitselfcanbeupdatedintheyweightsandbiasesofthelastlayerofthepolicy[181],whileleavingtherestoftheparametersectorditionedInthiscasetheinputtothepolicyitselfparameterizesaMeta-gradientestimationinouter-loopoptimizationEstimatinggradientsfortheouter-loopisnnerloopThereforeoptimizingtheouter-looprequirestakingthegradientofagradient,orameta-gradient,whichinvolvesofdatausedbyinnerlooponpriortedbydataintheouterloopStillthesepriorpoliciesdoaffectthedistributionofdatasampledinD,usedlaterbytheinner-looplearningalgorithm.Thusignoringthegradienttermsinthepolicyentpwithanmethodmayusearstorderapproximation63],orusegradient-freeoptimizationtoopti-Outer-loopalgorithmsWhilemostPPGmethodsuseapolicy-gradientalgorithmintheouter-saDAdditionally,onecantraintask-specificexpertsandthenusetheseforimitationlearninginthetorybehaviorbyoptimizingEquationtheycaneoverPPG3.2BlackBoxMethodsauniversalfunctionapproximator.ThisplacesfewerconstraintsonthefunctionfθthanwithaedbystructureByconditioningapolicyonacontextvector,alloftheweightsandbiasesofTmustgeneralizebetweenalltasksHoweverwhensignicantlydistinctpoliciesarerequiredfordifferenttasks,cydirectlyTheinnerloopmayproducealloftheparametersofafeedInner-looprepresentationWhilemanyblackboxmethodsuserecurrentneuralnetworks,[88,opionmechaexOuter-loopalgorithmsWhilemanyblackboxmethodsuseon-policyalgorithmsintheouter-loop[46,239,281],itisstraightforwardtouseoff-policyalgorithms[185,51,130],whichbringBlackboxtrade-offsOnekeybenefitofblackboxmethodsisthattheycanrapidlyaltertheirnoftenstruggletogeneralizeoutsideofpM,252].Considertherobotchef:whileitkboxingafullyblack-boxmethod,thepolicyorinner-loopcanbefine-tunedwithpolicygradientsat3.3TaskInferenceMethodsritrainingforeachtask,withnoplanningrequired.Infact,trainingapolicyoveradistributionoftasks,withaccesstothetruetask,canbetakenasthedefinitionofmulti-taskRL[263].InthedsmapthetaskdirectlytoweightspolicyheasTaskinferencewithprivilegedinformationAstraightforwardmethodforinferringthetaskistokcMionoftionwnTaskinferencewithmulti-tasktrainingSomeresearchusesthemulti-tasksettingtoimproventedtourinonthatencodesthetaskreprensitcontainsonlythisinformation[95,130].Afterthis,gθ(cM)canbeinferredinmeta-learningtaskRLmaybeisneededforthemeta-RLpolicytoidentifythetask.InthiscaseinsteadofonlyinferringthefcientlymanyexploratorythetasksharingpoliciesbecomeslessfeasibleOftenintrinsicrewardsareTaskinferencewithoutprivilegedinformationOthertaskinferencemethodsdonotrelyonForinstanceataskcanbeonortransitionfunction[278,281,268,280,86];andtaskinferencecanusecontrastivelearningHepisodesxAxAxAxAxAxAxAxAxxAKepisodestrationoffreeexplorationinrstKepisodesyellowfollowedbynotfreeexploedbyexploitationwhitedistributionusingavariationalinformationbottleneckesldtoreheotherhandtrainingthehattion3.4ExplorationandMeta-ExplorationshouldworkforanyMDPandmayconsistofrandomon-policyexploration,epsilon-greedyex-istypeofexplorationstilloccursintheadditionallyexistsexplorationintheZhouetal.[278],Gurumurthyetal.[83],Fuetal.[64],Liuetal.[130],andZhangetal.[268]pMToenablesampleefcientadaptationduseddistribution.Recallthatinthefew-shotadaptationsetting,oneachtrial,theagentisplacedintoanewtaskonsolvingthetaskinthenextfewepisodes(i.e.,overtheH_KepisodesinEquation3).Anduringtentiallyevenbeyondtheinitialfewshotswithexploitingwhatitalreadyknowstoachievehighrewards.ItisalwaysoptimaltoexploreinthefirstKepisodes,sincenoicingshorttermrewardstolearnabetterpolicyforhigherlaterreturnspaysdividends,whilewhenH_Kissmall,theagentmustexploitmoretoobtainanyrewarditcan,optimallyEnd-to-endoptimization.Perhapsthesimplestapproachistolearntoexploreandexploitend-to-endbydirectlymaximizingthemeta-RLobjective(Equation3)asdonebyblackboxmeta-RLapproaches[46,239,150,216,26].Approachesinthiscategoryimplicitlylearntoexplore,astheydirectlyoptimizethemeta-RLobjectivewhosemaximizationrequiresexploration.Morespecifically,thereturnsinthelaterK_HepisodesτeDG(τ)canonlybemaximizedifthepolicyappropriatelyexploresinthefirstKepisodes,somaximizingthemeta-RLobjectivecanyieldoptimalexplorationinprinciple.Thisapproachworkswellwhencomplicatedexplorationstrategiesarenotneeded.Forexample,ifattemptingseveraltasksinthedistributionoftasksisareasonableformofexplorationforaparticulartaskdistribution,thenend-to-endoptimizationmayworkwell.ingredients(i.e.,explore)ifdoingsoresultsinacookedmeal.Hence,itischallengingtolearnLriorsamplingTocircumventthechallengeofimplicitlylearningtoexploreRakellyetalwhattheidentityofthetaskis,andthentoiterativelyrefinethisdistributionbyinteractingwithviahatsalongtsinitialpositionrenttaddningthedynamicsandrewardfunctioninformationgainoverthetaskdistribution[64,130],orareductioninuncertaintyoftheposte-firstKepisodes,andthentheexploitationpolicyexploitsfortheremainingH_Kexploitationinformationaboutthetaskdynamics,butareirrelevantforarobotcheftryingtocookameal.cyusedhespaceofxxOptimal0-shotPosteriorSamplingIrrelevantExplorationAxxAxx AEpisode1xxAxxAxxAEpisode2xxAxxAxxAEpisode30imalexplorationandposteriorsamplingThethirdrowconsideringthatthisintrinsicrewardcanbeusedtotrainapolicyexclusivelyforoff-policydatasnotForexample,usingrandomnetworkdistillation[29],arewardmayaddanincentivefornovelty[282],oraddanincentiveforgettingdatawhereTD-errorishigh[77].Manyoftheserewards3.5Bayes-AdaptiveOptimalityrtaintyInsteadoptimalexplorationonlyreducesuncertaintygsmeforexplorationislimitedThereforesiscussximateBayesoptimalpoliciesandanalyzethebehaviorofBayes-adaptiveMarkovdecisionprocesses.Todeterminetheoptimalexplorationstrategy,weicsandrewardfunctionFromahighleveltheBayesadaptiveMarkovdeciBAMDPmaximizesreturnswhenplacedintoanunknownMDP.Crucially,thedynamicsofthearacterizesthecurrentuncertaintyasadistributionoverpotentialtionstsarst)sofar,andtheinitialbeliefb0isapriorp(r,p).Then,thestatesofntySpecicallytheBAMDPrewardR+(st,bt,at)=ER~bt[R(st,at)].(4)heBAMDP:P+(st+1,bt+11st,bt,at)=ER,P~bt[P(st+11st,at)δ(bt+1=p(R,P1τ:t+1)].(5)hecurrentbeliefr=R+(st,bt,at)=ER~bt[R(st,at)].EbRstbtatLearninganapproximateBayes-optimalpolicyDirectlycomputingBayes-optimalpoliciesre-onandthelatentvariablesmcanbelearnedbyrollingoutthepolicytoobtainonarnBayesadaptiveoptimalpoliciestheframeworkofBAMDPscanstillofferahelpfulFirst,blackboxmeta-RLalgorithmssuchasRL2learnarecurrentpolicythatnotonlycondi-tionsonthecurrentstatest,butonthehistoryofobservedstates,actions,andrewardsτ:t=memputingthebeliefstateetaRLalgorithmscaninprinciplelearnBayesadaptiveatetosmetaRLalgorithmsstruggletolearnischallengingLiuetalhighlightonesuchoptimizationchallengeforblackboxmeta-RLwheretheagentisgivenafew“free”episodestoexplore,andtheobjectiveistomaximizethernsbeginningfromthersttimestepThesetheresultinusinglesssuitableutensilsoringredients,though,especiallywhenoptimizedatlowerlveinterhecurrenttaskwhichisequivalenttothebeliefstateThenexplocycanbesufficientforoptimallysolvingthemeta-RLproblem,evenifitdoesnotmakeuseofallthisstate3.6SupervisionInthissection,wediscussmostofthedifferenttypesofsupervisionconsideredinmeta-RL.Inexperttrajectoriesorotherprivilegedinformationduringmeta-trainingand/ortesting).EachofMeta-RLMeta-RLwithMeta-RLviaImitationHYPER
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《激光原理》课程教学大纲
- 河北省邢台市重点高中2024-2025学年高三上学期10月月考生物试题含答案
- 2024年代理房源出租出售合同范本
- 培训机构工作汇报
- 从小爱祖国语言活动
- 医院财务管理制度培训
- 口腔种植及护理配合
- 医疗质控交流
- 关于脑部手术
- 传染病防控业务培训
- 墨菲定律(参考课件)
- ZFWG200变速箱及系列驱动桥结构原理及性能介绍讲义课件
- 公路交通情况调查基础知识课件
- 水泥助磨剂简介课件
- 四年级上册英语试题-Unit 4 School单元测试 Join in外研 剑桥英语(含答案)
- 行政执法人员培训基础知识课件
- 中国传统绘画之《千里江山图》教学设计-高中美术人美版(2019)美术鉴赏
- 染色体病总结课件
- 第8章 Q2 8型汽车起重机液压系统课件
- 辽宁省抚顺市药品零售药店企业药房名单目录
- (新版)征信知识竞赛基础题库(500题)
评论
0/150
提交评论