版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
调查研究预测技术价值分析环境分析可行性分析决策技术可靠性分析评价标准研制方案分析评估方案优选实验实证普遍实施确定目标发现问题反馈科学决策程序
4.1基本概念一、问题的提出例4.1
环境工程设施设计某单位计划建造环境工程设施,在已经确定选址及总规定总建筑面积的前提下,作出了三个设计方案,现要求从以下5个目标综合选出最佳的设计方案:低造价(每平方米造价不低于500元,不高于700元);抗震性能(抗震能力不低于里氏5级不高于7级);建造时间(越快越好);结构合理(单元划分、生活设施及使用面积比例等);造型美观(评价越高越好)这三个方案的具体评价表如下:具体目标方案1(A1)方案2(A2)方案3(A3)低造价(元/平方米)500700600抗震性能(里氏级)6.55.56.5建造时间(年)21.51结构合理(定性)中优良造型美观(定性)良优中
基本特点目标不至一个目标间的不可公度性目标间的矛盾性具体目标方案1(A1)方案2(A2)方案3(A3)低造价(元/平方米)500700600抗震性能(里氏级)6.55.56.5建造时间(年)21.51结构合理(定性)中优良造型美观(定性)良优中目标体系――是指由决策者选择方案所考虑的目标组及其结构;备选方案――是指决策者根据实际问题设计出的解决问题的方案;决策准则――是指用于选择的方案的标准。通常有两类:最优准则,满意准则。
多目标问题的三个基本要素二、几个基本概念1)劣解和非劣解如某方案的各目标均劣于其他目标,则该方案可以直接舍去。这种通过比较可直接舍弃的方案称为劣解。
如图中A、B、C、D、E、F、G均为劣解。非劣解:既不能立即舍去,又不能立即确定为最优的方案称为非劣解。如图中H、I。第一目标值第二目标值ABCDEFGHI对于m个目标,一般用m个目标函数,它满足刻划,其中x表示方案。最优解:设最优解为2)选好解在处理多目标决策时,先找最优解,若无最优解,就尽力在各待选方案中找出非劣解,然后权衡非劣解,从中找出一个按某一准则较为满意的解,这个过程称为“选好解”。单目标――辨优多目标――辨优+权衡(反映了决策者的主观价值和意图)4.2决策方法
一、化多目标为单目标的方法二、重排次序法三、分层序列法一、化多目标为单目标的方法主要目标优化兼顾其它目标的方法线性加权和法3.平方和加权法4.乘除法
设有m个目标f1(x),f2(x),…,fm(x);均要求为最优,但在这m个目标中有一个是主要目标,例如为f1(x),并要求其为最大。在这种情况下,只要使其它目标值处于一定的数值范围内,即就可把多目标决策问题转化为下列单目标决策问题:1.主要目标优化兼顾其它目标的方法
设有一多目标决策问题,共有f1(x),f2(x),…,fm(x)等m个目标,则可以对目标fi(x)分别给以权重系数(i=1,2,…,m),然后构成一个新的目标函数如下:2.线性加权和法
计算所有方案的F(x)值,从中找出最大值的方案,即为最优方案。技巧:在多目标决策问题中,或由于各个目标的量纲不同,或有些目标值要求最大而有些要求最小,则可首先将目标值变换成效用值或无量纲值,然后再用线性加权和法计算新的目标函数值并进行比较,以决定方案取舍。
并要求minF(x)。其中是第i(i=1,2,…,m)个目标的权重系数。3.平方和加权法
设有m个目标的决策问题,现要求各方案的目标值f1(x),f2(x),…,fm(x)与规定的m个满意值f1*,f2*,…,fm*的差距尽可能小,这时可以重新设计一个总的目标函数:4.乘除法
并要求minF(x)。
当有m个目标f1(x),f2(x),…,fm(x)时,其中目标f1(x),f2(x),…,fk(x)的值要求越小越好,目标fk(x),fk+1(x),…,fm(x)的值要求越大越好,并假定fk(x),fk+1(x),…,fm(x)都大于0。于是可以采用如下目标函数,重排次序法是直接对多目标决策问题的待选方案的解重排次序,然后决定解的取舍,直到最后找到“选好解”。下面举例说明重排次序法的求解过程。二、重排次序法例4.2
设某新建厂选择厂址共有n个方案m个目标。由于对m个目标重视程度不同,事先可按一定方法确定每个目标的权重系数。若用fij
表示第i
方案第j目标的目标值,则可列表如下。(1)无量纲化。为了便于重排次序,可先将不同量纲的目标值fij
变成无量纲的数值yij。
变换方法:对目标fj,如要求越大越好,则先从n个待选方案中找出第j个目标的最大值确定为最好值,而其最小值为最差值。即:并相应地规定
而其它方案的无量纲值可根据相应的f的取值用线性插值的方法求得。对于目标fi,如要求越小越好,则可先从n个方案中的第j个目标中找最小值为最好值,而其最大值为最差值。可规定(2)通过对n个方案的两两比较,即可从中找出一组“非劣解”,记作{B},然后对该组非劣解作进一步比较。(3)通过对非劣解{B}的分析比较,从中找出一“选好解”。最简单的方法是设一新的目标函数:若Fi值为最大,则方案i为最优方案。三、分层序列法分层序列法是把目标按照重要程度重新排序,将重要的目标排在前面,例如已知排成f1(x),f2(x),…,fm(x)。然后对第1个目标求最优,找出所有最优解集合,用R1表示,接着在集合R1范围内求第2个目标的最优解,并将这时的最优解集合用R2表示,依此类推,直到求出第m个目标的最优解为止。将上述过程用数学语言描述,即…
这种方法有解的前提是R1,R2,…,Rm-1等集合非空,并且不至一个元素。但这在解决实际问题中很难做到。于是又提出了一种允许宽容的方法。所谓“宽容”是指,当求解后一目标最优时,不必要求前一目标也达到严格最优,而是在一个对最优解有宽容的集合中寻找。这样就变成了求一系列带宽容的条件极值问题。
4.3多目标风险决策分析模型
设有方案A,自然状态有l个,目标有n个,该方案在第一个自然状态下各目标的后果值为θ11,θ12
,…,θ1n,第二个自然状态下各目标的后果值分别为θ21,θ22
,…,θ2n,等等。第l
个自然状态下各目标的后果值分别为θl1,θl2
,…,θlnp1p2plθl1,θl2
,…,θlnθ21,θ22
,…,θ2nθ11,θ12
,…,θ1nA该方案第一个目标的期望收益值为一般地,假设有m个备选方案,n个目标,第i个备选方案面临li
个自然状态。该模型可表述为下图。第二个目标的期望收益值为第n个目标的期望收益值为多目标风险型决策模型各方案中各目标的期望收益值分别为…
…这样,便把有限个方案的多目标风险型决策问题转化成为有限方案的多目标确定型决策问题:
问题:从现有的m个备选方案中选取最优方案(或最满意方案),决策者决策时要考虑的目标有n个:。决策者通过调查评估得到的信息可用下表表示4.4有限个方案多目标决策问题的分析方法
1.基本结构这一表式结构可用矩阵表示为称为决策矩阵,是决策分析方法进行决策的基础。决策准则:其中为第j个目标的权重。存在两个问题:第一,在决策矩阵中,各目标采用的单位不同,数值及其量级可能有很大的差异。如果使用原来目标的值,往往不便于比较各目标。第二,权重如何确定?w1w2……wn2.决策矩阵的规范化xy(1,2)xy
把一个向量化为单位向量1)效用值法2)向量规范化
把造价向量(500,700,600)规范化
把造价向量(500,700,600)规范化
一般地,bij无量纲,在区间(0,1)内。但变换后各属性的最大值和最小值并不是统一的,其最大者不一定是1,最小者不一定是0,有时仍不便比较。还有一个问题,上面例子中的造价是越小越好,而抗震性能是震级越高越好,这样二者不统一,还需作处理。3)线性变换如目标为效益(目标值愈大愈好),可令如目标为成本(目标值愈小愈好),令
如收益向量(20,40,30)如造价向量(500,700,600)首先,选聘L个专家(即专家或有丰富经验的实际工作者),请他们各自独立地对n个目标给出相应的权重。3.确定权的方法设第j位专家所提供的权重方案为:,满足则汇集这些方案可列出如表所示。
1)专家法目标权重专家给定允许,若…如果检验不通过,则需要和那些对应于方差估值大的专家进行协商,充分交换意见,再让他们重新调整权重,更新权重方案表。重复上述过程,最后得到一组满意的权重均值作为目标的权重。方法实用,但L不能太小。检验:则取各目标的权重为2)环比法这种方法先随意把各目标排成一定顺序,接着按顺序比较两个目标的重要性,得出两目标重要性的相对比率——环比比率,然后再通过连乘把此环比比率换算为都以最后一个目标基数的定基比率,最后在归一化为权重。设某决策有五个目标,下面按顺序来求其权重,见下表。目标按环比计算的重要性比率换算为以E为基数的重要性比率权重A2.04.50.327B0.52.250.164C3.04.500.327D1.51.500.109E—1.000.073合计13.751.000否则,,即。选择一组权,使比较各目标的相对重要度,()—第i个目标对第j个目标的相对重要性的估计值;
—这两个目标的权重和的比;如果决策人对()的估计一致,则3)权的最小平方法
如用拉格朗日乘子法解此有约束的优化问题,则拉格朗日函数为:为最小,其中满足4.强制决定法
此法要求把各个目标进行两两对比,两个目标比较,重要者记1分,次要者记0分。举例说明。考虑一个机械设备设计方案决策,设其目标有:灵敏度、可靠性、耐冲击性、体积、外观和成本共6项,首先画一个棋盘表格如下,其中打分所用列数为15(如目标数为n,则打分数为n(n-1)/2)。目标重要性得分总分修正总分权重灵敏度00111340.190可靠性11111560.286耐冲击性10111450.238体积00010120.095外观00000010.047成本00011230.142合计15211.000
在每个列内只打两个分,即在重要的那个目标行内打1分,在次要的那个目标行内打0分。该列的其余各行任其空着。表中总分列为各行得分之和,修正总分列是为了避免使权系数为0而设计的,其数值由总分列各数分别加上1得到,权重为各行修正总分归一化的结果。4.5
层次分析法(AHP)
层次分析法(AHP,theanalytichierarchyprocess)是20世纪70年代由美国学者萨蒂最早提出的一种多目标评价决策法。特点:将决策者对复杂系统的评价决策思维过程数学化。基本思想是把复杂的问题分解成若干层次和因素,在同层次各要素间简单地进行比较、判断和计算,以获得不同要素和不同备选方案的权重。定量信息要求较少,但要对问题的本质包含的要素相互间的逻辑关系掌握透彻。步骤:1)对构成决策问题的各种要素建立多级递阶的结构模型;总目标子目标评价准则方案2)对同一层次的要素以上一级的要素为准则进行两两比较,根据评定尺度确定其相对重要程度,并据此建立判断矩阵;3)确定各要素的相对重要度;4)对重要度进行综合,对各方案进行优先排序。一、多级递阶结构用层次分析法分析的系统,其多级递阶结构一般可以分成三层,即目标层,准则层和方案层。目标层为解决问题的目的,要想达到的目标。准则层为针对目标评价各方案时所考虑的各个子目标(因素或准则),可以逐层细分。方案层即解决问题的方案。层次结构往往用结构图形式表示,图中标明上一层次与下一层次元素之间的联系。如果上一层的每一要素与下一层次所有要素均有联系,称为完全相关结构。层次结构往往用结构图形式表示,图中标明上一层次与下一层次元素之间的联系。如果上一层的每一要素与下一层次所有要素均有联系,称为完全相关结构。目标准则1准则3准则2方案1方案2方案1目标层A准则层C方案层P完全相关性结构图综合决策
某地要改善一条河道的过河运输条件,为此需要确定是否要建立桥梁或隧道以代替现有的轮渡。在此问题中过河方式的确定取决于过河的效益与代价(即成本)。通常我们用费效比(即效益/代价)作为选择方案的标准。为此分别给出了两个层次结构(图1.1.2和图)。它们分别考虑了影响过河的效益与代价的因素,这些因素可分为三类:经济的、社会的和环境的。
决策的制定将取决于根据这两个层次结构确定的方案的效益权重与代价权重之比,即如能知道底层方案Di(i=1,2,3)对最高层Aj(j=1,2)的权系数wij(i=1,2,3,j=1,2),则可根据如下的决策公式Si=wi1/wi2,i=1,2,3
对三个方案进行排序、选择。工作选择可供选择的单位P1’
P2,Pn
贡献收入发展声誉工作环境生活环境目标层准则层方案层层次结构模型
准则层A
方案层B目标层Z若上层的每个因素都支配着下一层的所有因素,或被下一层所有因素影响,称为完全层次结构,否则称为不完全层次结构。某城市闹市区域的某一商场附近,由于顾客过于稠密,常常造成车辆阻塞以及各种交通事故。市政府决定改善闹市区的交通环境。经约请各方面专家研究,制定出三种可供选择的方案:A1:在商场附近修建天桥一座,供行人横穿马路;A2:同样目的,在商场附近修建一条地下行人横道;A3:搬迁商场。现试用决策分析方法对三各备选方案进行选择。一个完全相关性结构的案例这是一个多目标决策问题。在改变闹市区交通环境这一总目标下,根据当地的具体情况和条件,制定了以下5个分目标作为对备选方案的评价和选择标准:C1:通车能力;C2:方便过往行人及当地居民;C3:新建或改建费用不能过高;C4:具有安全性;C5:保持市容美观。改变闹市区交通环境(G)通车能力C1方便市民C2改建费用C3安全性C4市容美观C5天桥A1地道A2搬迁A3二、判断矩阵
判断矩阵是层次分析法的基本信息,也是计算各要素权重的重要依据。1.建立判断矩阵设对于准则C,其下一层有n
个要素A1,A2,…,An。以上一层的某一要素C作为判断准则,对下一层的n个要素进行两两比较来确定矩阵的元素值,其形式如下:CA1A2…Aj…AnA1a11a12…a1j…a1nA2a21a22…a2j…a2n…………………Aiai1ai2…aij…ain………………Anan1an2…anj…annCA1A2A3…Anaij表示以判断准则C
的角度考虑要素Ai对Aj的相对重要程度。若假设在准则C下要素A1,A2,…,An的权重分别为w1,w2,…,wn,即w=
(w1,w2,…,wn)T,则aij=wi/wj,矩阵称为判断矩阵。若假设在准则C下要素A1,A2,…,An的权重分别为w1,w2,…,wn,即w=(w1,w2,…,wn)T,则aij=wi/wj,aij应该满足:1)aii
=1;2)aij=1/aji;3)aikakj
=aij2)判断尺度判断矩阵中的元素aij是表示两个要素的相对重要性的数量尺度,称做判断尺度,其取值如表所示。判断尺度定义判断尺度定义1对C而言,Ai和Aj同样重要7对C而言,Ai比Aj重要的多3对C而言,Ai比Aj稍微重要9对C而言,Ai比Aj绝对重要5对C而言,Ai比Aj重要2,4,6,8介于上述两个相邻判断尺度之间三、相对重要度及判断矩阵的最大特征值的计算在应用层次分析法进行系统评价和决策时,需要知道Ai关于C的相对重要度,也就是Ai关于C的权重,即已知==求
由=n知,n为矩阵A的一个特征值,W是矩阵A
的对应于特征值n的特征向量。AW=nW成立,这样的数
称为方阵A的特征值,非零向量x称为A的对应于
的特征向量。假设A是n阶矩阵,如果数
和n维非零列向量x,使关系式矩阵A的特征向量即特征方程时,A具有唯一的非零最大特征值,且当矩阵A的元素满足由于判断矩阵A的最大特征值所对应的特征向量即为W,为此,可先求出判断矩阵的最大特征值所对应的特征向量,再经过归一化处理,即可求出Ai关于C的相对重要度。由于判断矩阵A的最大特征值所对应的特征向量即为W,为此,可先求出判断矩阵的最大特征值所对应的特征向量,再经过归一化处理,即可求出Ai关于C的相对重要度。求A的最大特征值和其对应的特征向量单位化得权重向量W设某一AHP判断矩阵为计算该矩阵的最大特征值及对应的特征向量的步骤如下:1.方根法1)计算矩阵A的每一行元素的乘积Mi2)计算Mi的n次方根i=1,2,…,n3)对向量作归一化处理,即令从而得到另一向量即为所求。4)
计算A的最大特征值由例求判断矩阵的最大特征值及其对应的特征向量。解:(1)求A中各行元素之乘积M1=1/15,M2=15,M3=1(2)求Mi
的n次方根(n=3)(3)对向量w(0)=(0.4055,2.4662,1)T
作归一化处理M1=1/15,M2=15,M3=1即为所求特征向量。w=(0.4055,2.4662,1)T4)求0.10470.63700.2583精度比较:算法w1w2w3方根法3.03850.10470.63700.2583乘幂法3.03850.10420.63730.2583注:乘幂法为“计算方法”中计算矩阵的最大特征值的最常用的方法之一。这里取精度为0.0001。求解步骤如下:1)将判断矩阵A中各元素按列作归一化处理,得另一矩阵B=(bij),其元素一般项为2)将矩阵B中各元素按行分别相加,其和为2.和积法3)对向量作归一化处理,得向量即为所求。4)求的方法与方根法相同,即对前例用和积法求得的结果如下:这样就提示我们可以用的关系来度量偏离相容性的程度。四、相容性判断若矩阵A完全相容,则有,否则由于判断矩阵的三个性质中的前两个容易被满足,第三个“一致性”则不易保证。如判断矩阵A被判断为A'有偏差,则称A'为不相容判断矩阵,这时就有度量相容性的指标为C.I.(ConsistenceIndex),一般情况下,若C.I.≤0.10,就可认为判断矩阵A'有相容性,据此计算的W'是可以接受的,否则重新进行两两比较判断。判断矩阵的维数n越大,判断的一致性将越差,故应放宽对高维判断矩阵一致性的要求,于是引入修正值R.I,见下表,并取更为合理的C.R为衡量判断矩阵一致性的指标。维数123456789R.I0.000.000.580.961.121.241.321.411.45五、综合重要度的计算
方案层n个方案对准则层的各准则的相对权重为:设有目标层A、准则层C、方案层P构成的层次模型(对于层次更多的模型,其计算方法相同),准则层C对目标层A的相对权重为:AC1C2C3C4P1P2P3p11p12p13p14c1c2c3c4P1对A的权重为:p11c1+p12c2+p13c3+p14c4
对层次总排序也需作一致性检验,检验仍象层次总排序那样由高层到低层逐层进行。
设层中与相关的因素的成对比较判断矩阵在单排序中经一致性检验,求得单排序一致性指标为,(),相应的平均随机一致性指标为(已在层次单排序时求得),则层总排序随机一致性比例为当时,认为层次总排序结果具有较满意的一致性并接受该分析分别分别表示景色、费用、居住、饮食、旅途。分别表示苏杭、北戴河、桂林。案例1
旅游问题(2)构造成对比较矩阵(3)计算层次单排序的权向量和一致性检验成对比较矩阵的最大特征值表明通过了一致性验证。故则该特征值对应的归一化特征向量
对成对比较矩阵可以求层次总排序的权向量并进行一致性检验,结果如下:计算可知通过一致性检验。对总目标的权值为:(4)计算层次总排序权值和一致性检验又决策层对总目标的权向量为:同理得,对总目标的权值分别为:故,层次总排序通过一致性检验。可作为最后的决策依据。故最后的决策应为去桂林。又分别表示苏杭、北戴河、桂林,即各方案的权重排序为
挑选合适的工作。经双方恳谈,已有三个单位表示愿意录用某毕业生。该生根据已有信息建立了一个层次结构模型,如下图所示。案例2111411/2112411/211/21531/21/41/41/511/31/3111/3311222331AB1B2B3B4B5B6B1
B2
B3B4B5B6(方案层)11/41/211/41/5413411/221/31521B1C1C2C3C1C2C3B2C1C2C3C1C2C3131/311/351/31731731/711/51/711171791171/7111/71/711/911B5C1C2C3B6C1C2C3B3C1C2C3B4C1C2C3C1C2C3C1C2C3C1C2C3C1C2C3层次总排序)如下表所示。准则研究课题发展前途待遇情况同事地理位置单位名气总排序权值准则层权值0.15070.17920.18860.04720.14640.2879方案层单排序权值工作1工作2工作30.13650.09740.24260.27900.46670.79860.62500.33310.08790.64910.46670.10490.23850.56950.66940.07190.06670.09650.39520.29960.3052根据层次总排序权值,该生最满意的工作为工作1案例3某单位准备挑选一位负责人,根据组织章程,上级提出了挑选负责人的十二条标准(1)忠诚正派;(2)责任心强;(3)虚怀若谷;(4)有远见;(5)有组织协调能力;(6)知人善用;(7)多某善断;(8)精通业务;(9)学历高,知识面广;(10)具有现代管理知识;(11)身体健康;(12)年龄合适。在报名竞争的总经理人选中,根据上级任命的人事小组评选结果,得分最高的三人总分一样,其得分如下:标准候选人得分123456789101112总分甲96784985868785乙89978768565785丙88775857669985为了从中选出一人为负责人,应进行权重分析。若得到十二个指标的权重,便可详细区分。选书记B1B2B3B4123456789101112B1:道德水平B2:管理才能B3:学识水平B4:健康水平目标层准则层标准层AB1B2B3B4B11223B21/2152B31/21/512B41/31/21/21(每行相加)(归一化)维数123456789R.I0.000.000.580.961.121.241.321.411.45B2C4C5C6C7C8C413331C51/31211/2C61/31/2121/3C71/311/211/2C812321B3C8C9C10C811/31/2C9312C1021/21B4C11C12C1113C121/31案例4改变闹市区交通环境(G)通车能力C1方便市民C2改建费用C3安全性C4市容美观C5天桥A1地道A2搬迁A3C1A1A2A3A1115A2115A31/51/51C2A1A2A3A1135A21/312A31/51/21C3A1A2A3A1147A21/414A31/71/41GC1C2C3C4C5C113535C21/31313C31/51/311/33C41/31313C51/51/31/31/31C4A1A2A3A111/21/3A2211A3311C5A1A2A3A111/21/3A221
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《状态检修基础知识》课件
- 内蒙古呼和浩特市2024届九年级上学期期末考试数学试卷(含答案)
- 养老院老人满意度调查评估制度
- 《电动机与电气传动》课件
- 《市场调查讲座》课件
- 《石墨烯的研究》课件
- 2024年版:国际文化旅游项目开发合同
- 技术研发合作合同(2篇)
- 2024年版金融服务合同(企业上市辅导)
- 2024天津房屋买卖合同中房屋租赁保证金及退还3篇
- 中医药与中华传统文化智慧树知到期末考试答案2024年
- 产品质量保证函模板
- 模板支撑脚手架集中线荷载、施工总荷载计算表(修正)
- GB/T 43700-2024滑雪场所的运行和管理规范
- 新媒体部门岗位配置人员架构图
- 水电站厂房设计-毕业设计
- 综合金融服务方案课件
- 《镇原民俗》课件
- 球磨机岗位作业指导书
- 眼科护理滴眼药水论文
- 市级社保基金运行分析报告
评论
0/150
提交评论