版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数f(x)ax1在区间[-2,2]1,求实数(-1,78,求函数f(x)的解析式。f(xx23mx1,(1)f(x的定义域为[-2,6m(2)f(xkx22k2)x2(1)x0f(xxf(x单调递减,求实数k(2)是否存在实数k,使函数值恒为正实数?(3)x轴的两个交点都不在区间[0,4]内,求实数k取值范围。(1)(2)(3)ax若点(1,2)在函数f(x) 的图像上,又在其反函数f1(xaxf已知函数f(x)定义域是R,且周期为6的周期函数,且对一切xR,等式f(3x)f(3xf(xRf(xf(x2)1f(xf(x1f43cos(43cos(2)y2x5,xx(3)y(4)y
x22xx22x
,x yx2nxm
yax22ax11,则实数a=_______f(xx25y1,则f(2x1x22xf(x的最小值是__________f(x)y轴上截距是1x(1,0y2x24x1x[0,3M,最小值是mMm________yx24x3x轴___平移__y轴___平移___yx2的图像。f(x)a22a)x2ax1a的取值范围是_____xx22kx3k201,则实数k的取值范围是__f(xx22nx2n2nny2x24x618053个单位,求所得到的图像对应的函数解析式。f(xx22ax31x2已知二次函数yax2bxc的图像经过点P(1,2)Q(-2,-1(1)用a表示b和c(2)aM(mm21),求实数m的值。函数(4)解f(x)ax1在区间[-2,2]1,求实数a0不合条件;当a0时,一次函数是单调函数,得(2a12a1)1a4
f(2)f(2)1(-1,78,求函数f(x)的解析式。解设二次函数解析式为:f(x)a(x2)2 对称轴x2图像过(-1,71 k a
9k7k f(xx23mx1,(1)f(x的定义域为[-2,6m(2)(1)f(xx26x1x[2,6])x3f(xx26x1在[-2,3]上是增函数,在[3,6]f(x)minf(2)15,f(x)maxf(2)f(xx23mx1x3m,所以在[0,2]23m0m0f(xx23mx1在[0,2]2值域为[6m3,103m10m2f(xx23mx1在[03m [3m,2[6m39m2113m22m f(xx23mx1在[03m上是增函数,在[3m,24
3m2m2
4f(x3
值域是[1,6mf(xkx22k2)x2(1)x0f(xxf(x单调递减,求实数k(2)是否存在实数k(3)(1)x0x1左边, k 所以k0k111k k(2)函数值恒为正,则2k2)28k
(3)x轴有两个交点,则2k2)28k4k240 xx20,则
1 2k
kx1x2
2k28②在右边,两根都大于4,则x14x240 无2(x14)(x24)2
16
8k8kk f(4)③在两侧,函数过(0,2,则f(0012f(4)所以,实数k的取值范围是(5,0(1)(2)(3)3y(1)yx35RRx3y53y3xyx33xy(2)函数yx21,x0值域为 x2y1xyyx21x0yx1x(3)y2x2xRRy2x2x得(2x)2y2x1即2x
2x0,2xyy y2x x2x x2
xlogy yy y2y y2y2
ax若点(1,2)在函数f(x) 的图像上,又在其反函数f1(xaxfax3x解:由于(ax3x
ab2a
f(x)2a2a
b已知函数f(x)定义域是R,且周期为6的周期函数,且对一切xR,等式f(3x)f(3xf(x证明:对于一切xR,f(3x)f(3x)恒成 所以令x3得f(33x)f(33x)f(x)f(6 又Tf(6x)f(x)f(x)f
f(xRf(xf(x2)1f(xf(x1f
f(x2)1f1f
f(x4
11f1f(x)11f1f
1ff(x8
f(x
1f
f
f(x843cos(1)y (2)y2x5,x[3,43cos(3)y
x22x
(4)y
x22x
,x43cos443cos43cos解(1令cosxt,t[1,1]此时y 的最值与y 又令43tx,x[1,7]那么y 最值与y 最值相同。y 上是增函数,所以y 最小值是f(x43cos443cos43cosf
f(2k)
7(kZ)(2)由于y2x52x232 ,由于yx1在区间[3,2]上1x1
x
xy2x5x[3,2fx
f(2)1,f
max
x22x5tt6y
x22x
y2t[6,0ty2t[6,0)和(0,y2t值域是(,10,y3
2x22x
值域是(,13由
x22x2
2x
1x
t,0t1y
x22x
,x y
2t1,0t1
f( 2
x22x
x12
,无最大值,值域[2
yx2nxmx11,则m=2n=2yax22ax11,则实数a=-2f(xx25y1,则此函数的解析式是f(x)x24x1。f(2x1x22xf(x的最小值是-1f(x)y轴上截距是1x(1,0f(16f(x2x23x1标是4
,1)8y2x24x1x[0,3时的最大值是M,最小值是mMm=8yx24x3x轴正方向2y轴正方向1yx2若函数f(xa22a)x2ax1aa83a0xx22kx3k201,则实数k的取值范围是k2f(xx22nx2n2nn1,此时顶点有坐标是1
14y2x24x618053个单位,求所得到的图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆租地合同范本
- 发廊转让合同范本
- 学校三方协议合同范本
- 电缆桥架合同范本
- 厂家投资合同范本
- 《注记文件系统及其在文件同步上的应用和分析》
- 家庭护理员合同范本
- 《小剂量肝素干预脓毒症前DIC的前瞻性临床研究》
- 小学运动会校长致辞14篇
- 《魏禧文学思想考论》
- 小学道德和法治课程学习评价课件
- 格力多联机系列can通讯协议第五代
- 大学生心理健康教育之新生入学适应课件
- 初中学生职业人生规划课件
- 胸痛单元建设课件
- 介入并发症应急处置预案与处理流程图
- 干、湿空气密度的计算
- 中华人民共和国劳动合同法(英文版)
- 2021年上海外国语大学辅导员招聘笔试试题及答案解析
- PETS5历年真题(口语)
- 幼儿园绘本故事:《七彩下雨天》 课件
评论
0/150
提交评论