版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=15002.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.3.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A. B. C. D.24.若关于的一元二次方程的一个根是,则的值是()A.2011 B.2015 C.2019 D.20205.对于反比例函数,下列说法不正确的是A.图象分布在第二、四象限B.当时,随的增大而增大C.图象经过点(1,-2)D.若点,都在图象上,且,则6.已知如图中,点为,的角平分线的交点,点为延长线上的一点,且,,若,则的度数是().A. B. C. D.7.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.8.对于二次函数,下列说法不正确的是()A.其图象的对称轴为过且平行于轴的直线.B.其最小值为1.C.其图象与轴没有交点.D.当时,随的增大而增大.9.对于反比例函数,下列说法正确的是()A.的值随值的增大而增大 B.的值随值的增大而减小C.当时,的值随值的增大而增大 D.当时,的值随值的增大而减小10.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y211.如图,正方形的边长为,动点,同时从点出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点运动终止,连接,设运动时间为,的面积为,则下列图象中能大致表示与的函数关系的是()A. B.C. D.12.二次函数,当时,则()A. B. C. D.二、填空题(每题4分,共24分)13.已知正方形ABCD的边长为,分别以B、D为圆心,以正方形的边长为半径在正方形内画弧,得到如图所示的阴影部分,若随机向正方形ABCD内投掷一颗石子,则石子落在阴影部分的概率为_____.(结果保留π)14.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是__________.15.在双曲线的每个分支上,函数值y随自变量x的增大而增大,则实数m的取值范围是________.16.方程的根是____.17.若关于x的函数与x轴仅有一个公共点,则实数k的值为.18.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:苹果损坏的频率0.1060.0970.1010.0980.0990.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.三、解答题(共78分)19.(8分)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.20.(8分)在直角坐标平面内,某二次函数图象的顶点为,且经过点.(1)求该二次函数的解析式;(2)求直线y=-x-1与该二次函数图象的交点坐标.21.(8分)如图,抛物线与x轴相交于两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.⑴求此抛物线的解析式;⑵当点位于轴下方时,求面积的最大值;⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.①求关于的函数解析式,并写出自变量的取值范围;②当时,直接写出的面积.22.(10分)如图,在中,AD是BC边上的高,。(1)求证:AC=BD(2)若,求AD的长。23.(10分)如图,某市郊外景区内一条笔直的公路经过、两个景点,景区管委会又开发了风景优美的景点.经测量,位于的北偏东的方向上,的北偏东的方向上,且.(1)求景点与的距离.(2)求景点与的距离.(结果保留根号)24.(10分)如图,△ABC的三个顶点在平面直角坐标系中的坐标分别为A(3,3),B(2,1),C(5,1),将△ABC绕点O逆时针旋转180°得△A′B′C′,请你在平面直角坐标系中画出△A′B′C′,并写出△A′B′C′的顶点坐标.25.(12分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:本次调查随机抽取了____名学生:表中;补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人26.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,请用树状图或列表法求下列事件的概率.(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于6.
参考答案一、选择题(每题4分,共48分)1、A【详解】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选A.2、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.3、B【解析】连接AD∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,则圆的半径是.故选B.点睛:连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.4、C【分析】根据方程解的定义,求出a-b,利用作图代入的思想即可解决问题.【详解】∵关于x的一元二次方程的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5、D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.6、C【分析】连接BO,证O是△ABC的内心,证△BAO≌△DAO,得∠D=∠ABO,根据三角形外角性质得∠ACO=∠BCO=∠D+∠COD=2∠D,即∠ABC=∠ACO=∠BCO,再推出∠OAD+∠D=180°-138°=42°,得∠BAC+∠ACO=84°,根据三角形内角和定理可得结果.【详解】连接BO,由已知可得因为AO,CO平分∠BAC和∠BCA所以O是△ABC的内心所以∠ABO=∠CBO=∠ABC因为AD=AB,OA=OA,∠BAO=∠DAO所以△BAO≌△DAO所以∠D=∠ABO所以∠ABC=2∠ABO=2∠D因为OC=CD所以∠D=∠COD所以∠ACO=∠BCO=∠D+∠COD=2∠D所以∠ABC=∠ACO=∠BCO因为∠AOD=138°所以∠OAD+∠D=180°-138°=42°所以2(∠OAD+∠D)=84°即∠BAC+∠ACO=84°所以∠ABC+∠BCO=180°-(∠BAC+∠ACO)=180°-84°=96°所以∠ABC=96°=48°故选:C【点睛】考核知识点:三角形的内心.利用全等三角形性质和角平分线性质和三角形内外角定理求解是关键.7、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8、D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A、B、D三项,再根据抛物线的顶点和开口即可判断C项,进而可得答案.【详解】解:,所以抛物线的对称轴是直线:x=3,顶点坐标是(3,1);A、其图象的对称轴为过且平行于轴的直线,说法正确,本选项不符合题意;B、其最小值为1,说法正确,本选项不符合题意;C、因为抛物线的顶点是(3,1),开口向上,所以其图象与轴没有交点,说法正确,本选项不符合题意;D、当时,随的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.9、C【分析】根据反比例函数的增减性逐一分析即可.【详解】解:在反比例函数中,﹣4<0∴反比例函数的图象在二、四象限,且在每一象限内y随x的增大而增大∴A选项缺少条件:在每一象限内,故A错误;B选项说法错误;C选项当时,反比例函数图象在第四象限,y随x的增大而增大,故C选项正确;D选项当时,反比例函数图象在第二象限,y随x的增大而增大,故D选项错误.故选C.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.10、B【解析】分析:根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.详解:∵双曲线中的-(k1+1)<0,∴这个反比例函数在二、四象限,且在每个象限都是增函数,且1<,
∴y1>0,y1<y3<0;
故有y1>y3>y1.
故选B.点睛:考查了运用反比例函数图象的性质判断函数值的大小,解题关键牢记反比例函数(x≠0)的性质:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大.
11、A【分析】根据题意结合图形,分情况讨论:①时,根据,列出函数关系式,从而得到函数图象;②时,根据列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【详解】①当时,∵正方形的边长为,∴;②当时,,所以,与之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合,故选A.【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.12、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】先求出空白部分面积,进而得出阴影部分面积,再利用石子落在阴影部分的概率=阴影部分面积÷正方形面积,进而得出答案.【详解】∵扇形ABC中空白面积=,∴正方形中空白面积=2×(2﹣)=4﹣π,∴阴影部分面积=2﹣(4﹣π)=π﹣2,∴随机向正方形ABCD内投掷一颗石子,石子落在阴影部分的概率=.故答案为:.【点睛】本题主要考查扇形的面积公式和概率公式,通过割补法,求出阴影部分面积,是解题的关键.14、【分析】利用公式直接计算.【详解】解:这六个数字中小于3的有1和2两种情况,则P(向上一面的数字小于3)=.故答案为:【点睛】本题考查概率的计算.15、m<﹣1【分析】根据在双曲线的每个分支上,函数值y随自变量x的增大而增大,可以得到m+1<0,从而可以求得m的取值范围.【详解】∵在双曲线的每个分支上,函数值y随自变量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案为m<﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.16、,【分析】把方程变形为,把方程左边因式分解得,则有y=0或y-5=0,然后解一元一次方程即可.【详解】解:,∴,∴y=0或y-5=0,∴.故答案为:.【点睛】此题考查了解一元二次方程-因式分解法,其步骤为:移项,化积,转化和求解这几个步骤.17、0或-1.【解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点.当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即.综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1.18、0.23【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=进价+利润”列方程解答.【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,
所以苹果的损坏概率为0.2.
根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克.
设每千克苹果的销售价为x元,则应有9000x=2.2×20000+23000,
解得x=3.
答:出售苹果时每千克大约定价为3元可获利润23000元.
故答案为:0.2,3.【点睛】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.三、解答题(共78分)19、48mm【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.【详解】设正方形的边长为xmm,则AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,解得x=48mm,∴这个正方形零件的边长是48mm.【点睛】本题主要考查了相似三角形判定与性质的综合运用,熟练掌握相关概念是解题关键.20、(1);(2)两个函数图象的交点坐标是和.【分析】(1)根据题意可设该二次函数的解析式为,把点代入函数解析式,求出a值,进而得出该二次函数的解析式;(2)由题意直线y=-x-1与该二次函数图象有交点得,进行求解进而分析即可.【详解】解:(1)依题意可设该二次函数的解析式为,把代入函数解析式,得,解得,故该二次函数的解析式是.(2)据题意,得,得,.当时,可得;当时,可得.故两个函数图象的交点坐标是和.【点睛】本题考查待定系数法求二次函数解析式,解题的关键是设出二次函数的顶点式,求出函数解析式.21、(1);(2)8;(3)①(),(),();②6.【分析】(1)将点C(0,-3)代入y=(x-1)2+k即可;(2)易求A(-1,0),B(3,0),抛物线顶点为(1,-4),当P位于抛物线顶点时,△ABP的面积有最大值;(3)①当0<m≤1时,h=-3-(m2-2m-3)=-m2+2m;当1<m≤2时,h=-1-(-4)=1;当m>2时,h=m2-2m-3-(-4)=m2-2m+1;②当h=9时若-m2+2m=9,此时△<0,m无解;若m2-2m+1=9,则m=4,则P(4,5),△BCP的面积=(4+1)×3=6;【详解】解:(1)因为抛物线与轴交于点,把代入,得,解得,所以此抛物线的解析式为,即;(2)令,得,解得,所以,所以;解法一:由(1)知,抛物线顶点坐标为,由题意,当点位于抛物线顶点时,的面积有最大值,最大值为;解法二由题意,得,所以,所以当时,有最大值8;(3)①当时,;当时,;当时,;②当h=9时
若-m2+2m=9,此时△<0,m无解;若m2-2m+1=9,则m=4,∴P(4,5),∵B(3,0),C(0,-3),∴△BCP的面积=(4+1)×3=6;【点睛】本题考查二次函数的图象及性质,是二次函数综合题;熟练掌握二次函数的性质,数形结合,分类讨论是解题的关键.22、(1)证明见解析;(2)1【分析】(1)由于tanB=cos∠DAC,所以根据正切和余弦的概念证明AC=BD;(2)设AD=12k,AC=13k,然后利用题目已知条件即可解直角三角形.【详解】(1)证明:∵AD是BC上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°,在Rt△ABD和Rt△ADC中,∵tanB=,cos∠DAC=,又∵tanB=cos∠DAC,∴=,∴AC=BD;(2)在Rt△ADC中,sinC=,故可设AD=12k,AC=13k,∴CD==5k,∵BC=BD+CD,又AC=BD,∴BC=13k+5k=11k,由已知BC=12,∴11k=12,∴k=,∴AD=12k=12×=1.【点睛】此题考查解直角三角形、直角三角形的性质等知识,也考查逻辑推理能力和运算能力.23、(1)BC=10km;(2)AC=10km.【分析】(1)由题意可求得∠C=30°,进一步根据等角对等边即可求得结果;(2)分别在和中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年海南考客运资格证模拟考试题
- 2024年四平道路旅客运输知识考试题库
- 2024年杭州汽车驾驶员客运资格证考试题
- 2024年舟山驾驶员客运从业资格证模拟考试题
- 2024年客运资格证考试模拟题及答案
- 2024年石家庄客运证考试模拟题考试
- 绿色低碳出行倡议书
- 幼儿园五大领域教学总结
- 一个子女的离婚协议书(3篇)
- 高中数学教学总结(15篇)
- 期中测试卷(1-4单元)(试题)-2024-2025学年人教版数学四年级上册
- 应用文写作+以“A+Clean-up+Activity”为题给学校英语报写一篇新闻报道+讲义 高二上学期月考英语试题
- 2024年华电电力科学研究院限公司招聘26人历年高频难、易错点500题模拟试题附带答案详解
- 校园反诈骗课件
- 2024-2030年中国工业脱水机行业发展状况及投资方向分析报告
- 网络传播法导论(第2版)课件 第五章 侵害名誉权
- 环评手续转让协议(2篇)
- 上海市高行中学2024-2025学年高二上学期9月质量检测数学试卷
- 保险的免责协议书模板
- 胸外科快速康复护理课件
- 医院污水处理运维服务投标方案(技术方案)
评论
0/150
提交评论