版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章
函数的概念与性质3.1.1函数的概念(第二课时)教材分析
本小节内容选自《普通高中数学必修第一册》人教A版(2019)第三章《函数的概念与性质》的第一节《函数的概念及其表示》(第二课时)。教材通过具体的例子介绍了区间的概念,通过同一函数的概念加深学生对函数的理解,会求函数的定义域、值域.
借助第一课时的理论依据得到同一函数的概念,通过例子让学生掌握函数定义域,函数值的求法,强化学生的数学运算、数学抽象、数据分析的核心素养.学习目标
1.理解区间的概念,并会用区间表示集合。2.函数的三要素:定义域、对应法则及值域。3.掌握判定函数和函数相等的方法。4.学会求函数的定义域与函数值。重点、难点1.
重点:理解函数的三要素:定义域、对应法则及值域,会求函数的定义域与函数值,在此过程中培养学生的数学抽象、数据分析、数学运算的素养。2.
难点:进一步理解函数的对应关系
,体会函数相等的概念。(一)新知导入
创设情境、问题生成设计运行时速高达350公里的京津城际列车呈现出超越世界的“中国速度”,使得新时速旅客列车的运行速度值界定在200公里/时与350公里/时之间.(一)新知导入
创设情境、问题生成【想一想】1.如何表示列车的运行速度的范围?2.还可以用其他形式表示列车的运行速度的范围吗?提示:1.我们已学习不等式、集合知识,所以用不等式可表示为
200<v<350,用集合可表示为{v|200<v<350}.2.还可以用区间表示为(200,350),这是表示范围的另一种方法.(一)新知导入
探索交流、解决问题【问题1】
燃放烟火市元宵佳节的传统风俗,此起彼伏的烟花在天空中绽放,绚丽多姿,争奇斗艳,蔚为壮观.你听,烟火嗖嗖向空中窜去,在空中砰砰炸开;你看,五颜六色的烟花绽放了,美极了.已知:①烟花炸开的时间是10到26秒;②烟花炸开的高度是30到40米之间。【思考1】(1)烟花炸开的时间和炸开的高度都是一个大致范围,我们能否有其他的表示方法呢?(2)区间能表示单独的实数吗?(3)区间表示实数有什么要求吗?(二)区间的概念
区间的概念
:
设a,b是两个实数,且a<b,我们规定
(二)区间的概念(1)区间只能表示_________的实数.如{3}不能用区间表示.(2)其他区间的表示方法。(3)注意端点的取舍,端点能取到是闭区间,端点取不到是开区间;_____和_____处一定是开区间。对概念的深度剖析:-∞+∞连续(二)区间的概念
【做一做】
用区间表示下列范围:[解析]∵A={x|5-x≥0},∴A={x|x≤5}.∴A=(-∞,5];∵B={x||x|-3≠0},∴B={x|x≠±3}.∴B=(-∞,-3)∪(-3,3)∪(3,+∞)∴A∩B=(-∞,5]∩(-∞,-3)∪(-3,3)∪(3,+∞)
=(-∞,-3)∪(-3,3)∪(3,5].已知集合A={x|5-x≥0},集合B={x||x|-3≠0},则用区间表示集合A、B、A∩B.(二)区间的概念【探究1】
用区间表示范围的时候应该注意什么?注意端点的取舍,端点能取到是闭区间,端点取不到是开区间;-∞和+∞处一定是开区间。【探究2】
当范围中有独立的实数时该怎么表示呢?独立的实数只能用集合来表示,也就是说区间的左端点一定小于右端点。(二)区间的概念【做一做】
若集合A=[2a-1,a+2],则实数a的取值范围用区间表示为__________.【解析】由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b.∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3,∴实数a的取值范围是(-∞,3).【答案】(-∞,3)(三)函数的相等提示:
1.由函数的概念可知是2个,定义域和对应关系;函数的三要素是:定义域、对应关系、值域。
2.根据函数的定义,函数值由自变量和对应关系唯一确定,所以函数的值域由定义域和对应关系唯一确定。【思考2】1.根据函数的定义,决定一个函数需要几个要素?函数的三要素是哪些?2.函数的值域由哪些因素确定?(三)函数的相等
函数的相等
:
一般地,函数有三个要素:_______________________.如果两个函数的定义域________,并且对应关系_________,我们就称这两个函数是_______函数.
定义域,对应关系与值域相同完全一致同一个1.两个函数的定义域和对应关系相同就决定了这两个函数的值域也_________.2.定义域和值域分别相同的两个函数是同一个函数吗?对概念的深度剖析:相同提示:不一定,如果对应关系不同,这两个函数一定不是同一个函数(三)函数的相等【做一做】
判断下列函数是否为相同的函数?(1)f(x)=(
)2,
g(x)=
;(2)y=x0与y=1(x≠0);(3)y=2x+1(x∈Z)与y=2x-1(x∈Z).[解析](1)因为函数f(x)=(
)2的定义域为{x|x≥0},而g(x)=的定义域为{x|x∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x0要求x≠0,且当x≠0时,y=x0=1,故y=x0与y=1(x≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x∈Z)与y=2x-1(x∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数.(四)函数的定义域提示:
1.A
2.函数的定义域是指解析式中x的取值范围,所以地位相同,范围相同。【思考3】1.函数的定义域是函数定义中的哪个集合?2.已知函数的解析式,函数的定义域是指使解析式各部分都有意义的未知数的取值集合.如果函数的解析式未知呢?(四)函数的定义域
抽象函数的定义域
:
函数的解析式未知,求函数的定义域时应该遵循“______________________”的原则求自变量的取值范围。
地位相同,范围相同【做一做】
如已知函数f(x)的定义域为[-1,5],求f(2x-1)的定义域。[解析]已知f(x)的定义域是[-1,5],即-1≤x≤4.故对于f(2x-1)应有-1≤2x-1≤5,∴0≤2x≤6,∴0≤x≤3.∴函数f(2x+1)的定义域是[0,3](五)函数的函数值、值域
2008年北京夏季奥运会中中国队获得51枚金牌,列金牌榜首位.让每个中国人都为之自豪!比赛进行天数与金牌总数如下表所示:天数12345678金牌总数2691317222627天数910111213141516金牌总数3539434546474951(五)函数的函数值、值域提示:(1)x的取值为1,2,3,…,15,16;y的取值为2,6,9,13,17,22,26,27,35,39,43,45,46,47,49,51.(2)f(2)=6,f(10)=39.若1≤a≤16,则f(a)对应y的一个值,否则无法表示.(3)不同.f(x)表示y是x的函数,其中f为对应关系;而f(a)表示函数f(x)当自变量x取a时的一个函数值f(a).(4)定义域:{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},值域:{2,6,9,13,17,22,26,27,35,39,43,45,46,47,49,51}.【思考4】(1)设金牌总数是y,比赛天数为x,则该对应关系可用y=f(x)来表示,则x取哪些值,y取哪些值?(2)f(2)等于多少?f(10)呢?f(a)呢?(3)f(x)与f(a)是否相同?为什么?(4)定义域与值域是多少?(五)函数的函数值、值域
函数的值域:
函数的定义中,与的值相对应的值叫做_______,函数值____________的集合叫做函数的_______;值域是集合B的_______。并且函数值由定义域和对应关系唯一确定。
函数值值域子集【做一做】
已知(x∈R,且x≠-1),g(x)=x2+2(x∈R),则________,
_______.[提示](六)函数概念的综合应用1.区间例1用区间的方法表示下列集合:表示为_____________;
表示为_____________.
[解析]表示为区间:[0,5);表示为区间:(-∞,-1]∪[3,+∞)[答案][0,5)(-∞,-1]∪[3,+∞)(六)函数概念的综合应用1.区间【延伸拓展】若集合A=[2a+1,a-2],则实数a的取值范围用区间表示为______________.[解析]由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b.∵A=[2a+1,a-2],∴2a+1<a-2.∴a<-3,∴实数a的取值范围是(-∞,-3).答案:(-∞,-3)(六)函数概念的综合应用
如何用区间表示集合1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示.【类题通法】【提醒】1.-∞和+∞处一定是开区间;2.独立的实数只能用集合来表示,也就是说区间的左端点一定小于右端点。3.区间和区间之间的连接和几何相同,也用“∪”和“∩”来连接。1.区间【巩固练习1】集合{x|0<x<1或2≤x≤11}用区间表示为__________.
[答案](0,1)∪[2,11](六)函数概念的综合应用2.函数相等例2.(多选题)(2020·安徽淮北市树人高级中学高一期中)下列函数中与函数y=x不相同的是()A.y= B.y=C.y= D.y=【解析】函数y=x的定义域为R,对于A,函数y=x和y=x2对应关系不同,故不是相同函数;对于B,函数y==t,定义域为R,故与函数y=x是相同函数;对于C,函数y==|x|,和函数y=x的对应关系不同,故不是相同函数;对于D,y=的定义域为,和函数y=x的定义域不同,故不是相同函数.答案:ACD(六)函数概念的综合应用2..函数相等
【类题通法】判断函数相等的方法定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等.(六)函数概念的综合应用2.函数相等【巩固练习2】试判断以下各组函数是否表示同一函数:[答案]⑤解析:①f(x)与g(x)的定义域不同,不是同一函数;②f(x)与g(x)的解析式不同,不是同一函数;③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数;④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、对应关系皆相同,是同一函数.①f(x)=,g(x)=x-1;②f(x)=,g(x)=;③f(x)=,g(x)=x+3;④f(x)=x+1,g(x)=x+x0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t≤5)与一次函数g(x)=80x(0≤x≤5).其中表示相等函数的是___________(填上所有正确的序号).
(六)函数概念的综合应用3.函数的定义域例3.求下列函数的定义域:(1)y=(2)f(x)=【解】(1)要使函数有意义,自变量x的取值必须满足即解得x<0,且x≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x的取值必须满足即故原函数的定义域为(-∞,1)∪(1,4].(六)函数概念的综合应用3.函数的定义域例4.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域.【解析】已知f(x)的定义域是[-1,4],即-1≤x≤4.故对于f(2x+1)应有-1≤2x+1≤4,∴-2≤2x≤3,∴-1≤x≤∴函数f(2x+1)的定义域是[-1,].(六)函数概念的综合应用3.函数的定义域
【类题通法】2.抽象函数的定义域:“地位相同,范围相同”1.常见函数的定义域:函数类型整式函数分式函数根式函数0次函数定义域R分母≠0奇次根式:R偶次根式:被开方数≥0底数≠0(六)函数概念的综合应用3.函数的定义域【巩固练习3】求下列函数的定义域.【解析】(1)由已知可得即所以定义域为{x|x≤1且x≠-1}.(2)由已知可得即
所以定义域为(-∞,]∪[2,4).(六)函数概念的综合应用4.求函数的函数值、值域例5.(2021·江苏高一专题练习)已知.(1)求,(a)+(3)的值;(2)若,求的值域.【解析】(1)因为
(2)因为,又因为所以得即所以函数的值域为[-4,5](六)函数概念的综合应用4.求函数的函数值、值域例6.求下列函数的值域①y=x+1;②y=x2-2x+3,x∈[0,3);③;④【解析】①(观察法)因为x∈R,所以x+1∈R,即函数值域是R.②(配方法)y=x2-2x+3=(x-1)2+2,由x∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)所以函数的值域为(-∞,3)∪(3,+∞)④(换元法)设t=,则t≥0且x=t2+1所以y=2(t2+1)-t=2(t-)2+,由t≥0,再结合函数的图象(如图),可得函数的值域为[,+∞)(六)函数概念的综合应用4.求函数的函数值、值域
【类题通法】1.求函数值的方法(1)已知f(x)的解析式时,只需用a替换解析式中的x即得f(a)的值.(2)已知f(x)与g(x),求f(g(a))的值应遵循由里往外的原则.2.求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f(x)=ax+b+(其中a,b,c,d为常数,且a≠0)型的函数常用换元法.(六)函数概念的综合应用4.求函数的函数值、值域【巩固练习4】求下列函数的值域(1)(2)【解析】(1)因为≥0,所以+1≥1,即所求函数的值域为[1,+∞).(2)因为又函数的定义域为R,所以x2+1≥1,所以0<≤2,则y∈(-1,1].所以所求函数的值域为(-1,1].(七)操作演练素养提升1.下列各组函数中,表示同一个函数的是()A.y=x-1和y=B.y=x0和y=1C.f(x)=(x-1)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学前班保育员个人工作计划模版(二篇)
- 2024年大学后勤采购部工作职责(二篇)
- 2024年实习协议经典版(二篇)
- 2024年安全质量部职责范例(四篇)
- 2024年厂规厂纪制度例文(三篇)
- 2024年学校后勤管理工作计划例文(三篇)
- 【《新能源汽车行业融资模式探析:以蔚来汽车为例》11000字(论文)】
- 【《湖北神丹健康食品有限公司员工培训现状及优化策略(数据论文)》10000字】
- 2024年小学班主任班级管理工作计划范例(二篇)
- 2024年季度工作总结(五篇)
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 五年级人自然社会全册教案
- 人教版四年级数学上册《角的度量复习课》复习教案
- 通达OA基本功能及使用课件
- astm_b盐雾试验标准中文
- 高中世界地理区域地理填图
- (完整版)沉井和顶管监理细则
- 高低压配电室运行巡查表
- 农村家庭贫困证明书范文
- 儿科过敏性紫癜护理查房记录
- 2022年2022年北京市各区中考英语一模试卷分类汇编完形填空专题
评论
0/150
提交评论