下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b2.若集合,,则A. B. C. D.3.函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为()A. B.C. D.4.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.5.在复平面内,复数对应的点的坐标为()A. B. C. D.6.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.7.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.8.两圆和相外切,且,则的最大值为()A. B.9 C. D.19.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.10.已知函数在上有两个零点,则的取值范围是()A. B. C. D.11.记单调递增的等比数列的前项和为,若,,则()A. B. C. D.12.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.14.已知函数,则下列结论中正确的是_________.①是周期函数;②的对称轴方程为,;③在区间上为增函数;④方程在区间有6个根.15.在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为__________.16.函数的最大值与最小正周期相同,则在上的单调递增区间为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.18.(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.19.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.20.(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.21.(12分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程与直线的参数方程;(2)若直线与曲线相交于,两点,且,求实数的值.22.(10分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.2.C【解析】
解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.3.A【解析】
由图根据三角函数图像的对称性可得,利用周期公式可得,再根据图像过,即可求出,再利用三角函数的平移变换即可求解.【详解】由图像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因为函数的图象由图象向右平移个单位长度而得到,所以.故选:A【点睛】本题考查了由图像求三角函数的解析式、三角函数图像的平移伸缩变换,需掌握三角形函数的平移伸缩变换原则,属于基础题.4.B【解析】
变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.【点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)5.C【解析】
利用复数的运算法则、几何意义即可得出.【详解】解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.6.A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.7.D【解析】
由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.8.A【解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.【详解】因为两圆和相外切所以,即当时,取最大值故选:A【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.9.B【解析】
根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.10.C【解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.11.C【解析】
先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.【详解】因为为等比数列,所以,故即,由可得或,因为为递增数列,故符合.此时,所以或(舍,因为为递增数列).故,.故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.12.D【解析】
由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以,在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由题意可知:为上的单调函数,则为定值,由指数函数的性质可知为上的增函数,则在,单调递增,求导,则恒成立,则,根据函数的正弦函数的性质即可求得的取值范围.【详解】若方程无解,则或恒成立,所以为上的单调函数,都有,则为定值,设,则,易知为上的增函数,,,又与的单调性相同,在上单调递增,则当,,恒成立,当,时,,,,,,此时,故答案为:【点睛】本题考查导数的综合应用,考查利用导数求函数的单调性,正弦函数的性质,辅助角公式,考查计算能力,属于中档题.14.①②④【解析】
由函数,对选项逐个验证即得答案.【详解】函数,是周期函数,最小正周期为,故①正确;当或时,有最大值或最小值,此时或,即或,即.的对称轴方程为,,故②正确;当时,,此时在上单调递减,在上单调递增,在区间上不是增函数,故③错误;作出函数的部分图象,如图所示方程在区间有6个根,故④正确.故答案为:①②④.【点睛】本题考查三角恒等变换,考查三角函数的性质,属于中档题.15.【解析】
根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.【详解】根据题意画出几何图形,以为原点建立空间直角坐标系:设正方体的棱长为1,则所以所以,所以异面直线与所成角的余弦值为,故答案为:.【点睛】本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.16.【解析】
利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可.【详解】∵,则函数的最大值为2,周期,的最大值与最小正周期相同,,得,则,当时,,则当时,得,即函数在,上的单调递增区间为,故答案为:.【点睛】本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此,,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,,∴时,即函数在单调递增,在单调递减,∵和时均有,∴,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,,且,∴,故,又∵,令,则,且恒成立,令,而,∴时,时,∴,令,若,则时,,即函数在单调递减,∴,与不符;若,则时,,即函数在单调递减,∴,与式不符;若,解得,此时恒成立,,即函数在单调递增,又,∴时,;时,符合式,综上,存在唯一实数符合题意.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.(1)见解析;(2)(﹣∞,0]【解析】
(1)利用导数求x<0时,f(x)的极大值为,即证(2)等价于k≤,x>0,令g(x)=,x>0,再求函数g(x)的最小值得解.【详解】(1)∵函数f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)内递增,在(﹣,0)内递减,在(0,+∞)内递增,∴f(x)的极大值为,∴当x<0时,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,则g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,则h(x)在(0,+∞)上单调递增,且x→0+时,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,当x∈(x0,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴实数k的取值范围是(﹣∞,0].【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.(1)43,47;(2)分布列见解析,.【解析】
(1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【详解】(1)中位数为,众数为.(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,,,的分布列如下:故【点睛】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.20.(1)个;(1)存在,.【解析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求导得到最值,得到满足条件的的范围.试题解析:(1)设,.............1分令,得递增;令,得递减,.................1分∴,∴,即,∴.............3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为1...........................5分(或由方程在上有两根可得)(1)假设存在实数,使得对恒成立,则,对恒成立,即,对恒成立,................................6分①设,令,得递增;令,得递减,∴,当即时,,∴,∵,∴4.故当时,对恒成立,.......................8分当即时,在上递减,∴.∵,∴,故当时,对恒成立............................10分②若对恒成立,则,∴...........11分由①及②得,.故存在实数,使得对恒成立,且的取值范围为........
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年贵州安顺市西秀区事业单位招聘对象历年高频重点提升(共500题)附带答案详解
- 2025下半年浙江嘉兴市海盐县机关事业单位招聘编外用工107人高频重点提升(共500题)附带答案详解
- 2025下半年四川省泸州市泸县事业单位招聘325人历年高频重点提升(共500题)附带答案详解
- 2025下半年四川乐山峨边县事业单位招聘25人历年高频重点提升(共500题)附带答案详解
- 2025上半年黑龙江大兴安岭地区事业单位招聘工作人员338人历年高频重点提升(共500题)附带答案详解
- 2025上半年福建宁德基层医学人才公开招聘28人高频重点提升(共500题)附带答案详解
- 2025上半年江苏省无锡梁溪事业单位招聘54人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川省广元市利州区事业单位考试招聘26人高频重点提升(共500题)附带答案详解
- 饮料生产厂房建设施工合同
- 劳务规范制度警示板
- 2022年人力资源管理各专业领域必备知识技能
- 医院室内装修拆除工程施工方案
- 基于AT89C51的路灯控制系统设计
- 第二章国际石油合作合同
- 甲型H1N1流感防治应急演练方案(1)
- LU和QR分解法解线性方程组
- 设计后续服务承诺书
- 漏油器外壳的落料、拉深、冲孔级进模的设计【毕业论文绝对精品】
- 机械加工设备清单及参考价格
- 北京市西城区20192020学年六年级上学期数学期末试卷
- 加工中心全部的报警说明
评论
0/150
提交评论