版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
核心热点真题印证核心素养统计图表2018·Ⅰ,3数学抽象、数据分析二项分布2018·Ⅰ,20;2017·Ⅰ,19数学运算、数据分析分布列、期望2017·Ⅲ,18;2016·Ⅰ,19数学运算、数据分析正态分布2017·Ⅰ,19数据分析条件概率2016·Ⅱ,18数据分析回归分析2018·Ⅱ,18;2016·Ⅲ,18直观想象、数据分析独立性检验2018·Ⅲ,18;2017·Ⅱ,18数据分析教材链接高考——茎叶图、独立性检验[教材探究](必修3P70茎叶图)某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.绘制甲乙两名运动员得分的茎叶图,根据茎叶图判断哪名运动员的成绩更好?并说明理由.[试题评析]统计的基本思想是由样本来估计总体,根据茎叶图能够用样本的数字特征估计总体的数字特征,从而作出统计推断.【教材拓展】
甲、乙两名同学在7次数学测试中的成绩如茎叶图所示,其中甲同学成绩的众数是85,乙同学成绩的中位数是83,试分析甲乙两名同学哪个一个成绩较稳定.解根据众数及中位数的概念易得x=5,y=3,故成绩较稳定的是甲.探究提高1.作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图.2.作样本的茎叶图一般对称作图,数据排列由内向外,从小到大排列,便于数据的处理.3.茎叶图完全反映了所有原始数据,解决茎叶图给出的统计图表试题时,要充分使用图表提供的数据进行相关计算或者对某些问题作出判断,这类试题往往伴随着对数据的平均值或者方差的计算等.【链接高考】
(2018·全国Ⅲ卷)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如图所示的茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m不超过m第一种生产方式
第二种生产方式
∴第二种生产方式的效率更高.(2)由茎叶图数据得到m=80.由此填写列联表如下:
超过m不超过m总计第一种生产方式15520第二种生产方式51520总计202040(3)根据(2)中的列联表计算.所以有99%的把握认为两种生产方式的效率有差异.教你如何审题——回归分析问题【例题】
如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2020年我国生活垃圾无害化处理量.附注:[审题路线][自主解答]解
(1)由折线图中数据和附注中参考数据得因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.将2020年对应的t=13代入回归方程得=0.92+0.10×13=2.22.所以预测2020年我国生活垃圾无害化处理量将约为2.22亿吨.探究提高
在两个变量的回归分析中要注意以下两点:(1)求回归直线方程要充分利用已知数据,合理利用公式减少运算.(2)借助散点图,观察两个变量之间的关系.若不是线性关系,则需要根据相关知识转化为线性关系.【尝试训练】
某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x年与年销售量y(单位:万件)之间的关系如表:(1)在图中画出表中数据的散点图;x1234y12284256(2)根据散点图选择合适的回归模型拟合y与x的关系(不必说明理由);(3)建立y关于x的回归方程,预测第5年的销售量.参考公式:回归直线x的斜率和截距的最小二乘估计分别为解(1)作出的散点图如图:(2)根据散点图观察,可以用线性回归模型拟合y与x的关系.观察散点图可知各点大致分布在一条直线附近,列出表格:故预测第5年的销售量大约为71万件.满分答题示范——分布列、期望、方差【例题】
(12分)(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?[规范解答][高考状元满分心得]❶得步骤分:抓住得分点的步骤、步步为赢:如第(1)问,指出随机变量X所有的可能取值,有则得1分,无则没有分;随机变量X的各个值对应的概率也是每个1分,列出其分布列是1分,每个步骤都有分,都是得分点,第(2)问也是如此.❷得关键分:解题过程的关键点,有则给分,无则没分,如第(2)问中,根据n的范围求E(Y),即当300≤n≤500时,E(Y)=640-2n;当200≤n≤300时,E(Y)=160+1.2n,若这两个关键运算结果有误,即使有计算过程和步骤也不得分.❸得计算分:解题过程中计算正确,是得满分的保证,如第(1)问中三个概率值的计算要正确,否则不得分.[构建模板]解
(1)设甲正确完成面试的题数为ξ,则ξ的可能取值为1,2,3.应聘者甲正确完
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年装修行业预订款协议样本版B版
- 2024年适用鸡肉供应协议基本格式版B版
- 2024年跨区域增值税发票管理服务合同
- 2024施工劳务承包合同范本:建筑工程专业版2篇
- 2024年虚拟现实(VR)设备销售与租赁合同模板3篇
- 2024年租赁合同及聘用协议
- 2024水泥厂环境治理及节能减排合作协议3篇
- 2024年环保设施运维服务与环境保护合作协议3篇
- 2024年私募股权投资风险评估与管理咨询服务合同3篇
- 体育器材行业工程师工作总结
- 大学英语智慧树知到期末考试答案章节答案2024年海南经贸职业技术学院
- 执行力神经机制与脑成像研究
- 冷链物流高质量发展“十四五”规划
- 2024年新疆乌鲁木齐市选调生考试(公共基础知识)综合能力题库完美版
- 2024年中荆投资控股集团有限公司招聘笔试冲刺题(带答案解析)
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
- 修理厂合伙人合同协议书模板
- 大学生医疗创新创业
- 危险化学品无仓储经营单位生产安全事故应急救援预案(新导则版)
- MOOC 企业内部控制-山西省财政税务专科学校 中国大学慕课答案
- 质量管理体系知识培训课件
评论
0/150
提交评论