版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...云南省高中数学学业水平考试考点与试题分类汇编考点1:集合的交、并、补与元素集合间的关系.1.设集合集合,那么等于〔〕2.全集集合那么全集中的补集为〔〕3.集合那么以下关系中正确的选项是〔〕4.全集集合那么〔〕5.集合,那么=〔〕6.全集,集合,那么〔〕7.集合那么〔〕8.设集合集合那么〔〕考点2:三视图及其与空间几何体的外表积、体积9.如以下列图,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的外表积为〔〕10.有一个几何体的三视图如以下列图,这个几何体是一个〔〕棱台棱椎棱柱圆台11.有一个几何体的三视图如以以下列图所示,这个几何体是一个〔〕棱台棱椎棱柱圆椎12.如以下列图,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是〔〕正方体圆椎圆柱半球13.某几何体的正视图与侧视图都是边长为1的正方形,且体积为1,那么该几何体的俯视图可以是〔〕14.某几何体的直观图如以以下列图,那么该几何体的俯视图为〔〕15.一个空间几何体的正视图与侧视图为全等的正三角形,俯视图是一个半径为1的圆,那么这个几何体的体积为〔〕16.假设一几何体的三视图如右图所示,那么这个几何体可以是〔〕圆柱空心圆柱圆圆椎考点3:平面向量〔向量的加法、减法、数乘运算与坐标表示〕17.在平行四边形中,〔〕18.向量、,的夹角等,那么等于〔〕19.设向量,那么向量的夹角为〔〕20.在中,是边上的中点,那么向量等于〔〕21..设向量,那么等于〔〕22.在中,是边上的中点,那么等于〔〕23.在平行四边形中,与交于点,那么=〔〕24..向量,那么向量〔〕25.在矩形中,〔〕26.向量与的夹角为,且那么=〔〕27.向量,,假设,那么.28.向量的值为〔〕29.是的一条中线,记向量,那么向量等于〔〕30.向量,,假设,那么实数的值为〔〕31如图,在中,是边上的中点,假设=,那么实数=.考点4:三角函数的图象变换32.函数的图象为,为了得到函数的图象只需把上的所有的点〔〕向右平行移动个单位长度向左平行移动个单位长度向右平行移动个单位长度向左平行移动个单位长度33.为了得到函数的图象,只需把函数图象上所有的点〔〕横坐标伸长到原来的倍,纵坐标不变横坐标缩小到原来的倍,纵坐标不变纵坐标伸长到原来的倍,横坐标不变纵坐标缩小到原来的倍,横坐标不变34.要得到函数的图象,只需将函数的图象〔〕向左平移向右平移向左平移向右平移35.为了得到函数的图象,只需把函数图象上所有的点〔〕横坐标伸长为原来的倍,纵坐标不变横坐标缩短为到原来的倍,纵坐标不变纵坐标伸长为原来的倍,横坐标不变纵坐标缩短到原来的倍,横坐标不变36.函数.(1)求函数的最小正周期和最大值;是〔第37题〕否开场完毕〔2〕函数是〔第37题〕否开场完毕考点5:算法之程序框图、算法语言37.一个算法,其流程图如右图所示,那么输出结果是〔〕38.当输入的值为时,下边的程序运行的结果等于〔〕是〔第39题〕否开场完毕是〔第39题〕否开场完毕INPUTIFx<1THENELSEPRINTINPUTIFx<1THENELSEPRINTPRINTEND(第38题)(第38题)39.一个算法,其流程图如以以下列图所示,假设输入,那么输出的结果是.40.运行如图的程序,输出值是.〔第40题〕〔第41题〕〔第40题〕〔第41题〕否是开场完毕41.一个算法,其流程图如图,,那么输出的结果是〔〕42.一个算法,其流程图如图,那么输出的结果是〔〕否是〔第43题〕开场完毕是否〔第42题〕开场完毕否是〔第43题〕开场完毕是否〔第42题〕开场完毕43.一个算法,其流程图如图,那么输出的结果是〔〕是〔第44题〕否开场完毕44.一个算法的程序框图如图,当输入的的值为时,输出的是〔第44题〕否开场完毕45.运行右图的程序框图,那么输出的值是是〔第45题〕是〔第45题〕否开场完毕46.对于如以下列图的程序框图,假设输入的的值是,那么输出的值是.是是〔第46题〕否开场完毕考点6:直线的方程、直线与直线的位置关系47.过点,且平行于直线的直线方程为〔〕48.直线的点斜式方程是,那么此直线的斜率为〔〕49.直线的倾斜角是〔〕50.斜率为在轴的截距为的直线方程是〔〕51.直线与直线的位置关系是〔〕平行垂直相交但不垂直重合52.直线过点且斜率为,那么直线的方程是〔〕53.经过点,且与直线垂直的直线方程是〔〕54.直线过点,且与直线平行,那么直线的方程为〔〕考点7:圆的方程55.过点以及圆与圆交点的圆的方程是〔〕56.圆的圆心坐标及半径为〔〕57.圆心为点,且过点的圆的方程为.考点8:直线与圆的位置关系58.直线过点点,圆,那么直线与圆的位置关系是〔〕相交相切相交或相切相离59.直线过点点,圆,那么直线与圆的位置关系是〔〕相交相切相交或相切相离60.直线被圆截得的弦长为〔〕61.以下直线方程中,不是圆的切线方程的是〔〕62.圆:,直线,点为坐标原点.〔1〕求过圆的圆心且与直线垂直的直线的方程;〔2〕假设直线与圆相交于点、两点,且,求实数的值.直线与圆:的位置关系是.63.圆与直线相交于不同的、两点,为坐标原点.〔1〕求的取值范围;〔2〕假设,求实数的值.64.圆:和直线.〔1〕当为何值时,直线与圆相切,〔2〕假设直线与圆相交于、两点,且,求直线的方程.考点9:几何概型64.一个长、宽分别为和的长方形内接于圆〔如以以下列图〕,质地均匀的粒子落入图中〔不计边界〕,那么落在长方形内的概率等于〔〕〔第66题〕65.在如图以为中心的正六边形上随机投一粒黄豆,那么这粒黄豆落到阴影局部的概率为〔〕〔第66题〕66.如图,在边长为2的正方形内有一内切圆,现从正方形内任取一点,那么点在圆内的概率为〔〕67.如图,在中,是边上的点,且,连接.现随机丢一粒豆子在内,那么它落在阴影局部的概率是〔〕68.如图,在半径为1的圆中有封闭曲线围城的阴影区域,假设在圆中随机撒一粒豆子,它落在阴影区域内的概率为,那么阴影区域的面积为〔〕69.如图,向圆内随机掷一粒豆子〔豆子的大小忽略不计〕,那么豆子恰好落在圆的内接正方形中的概率是〔〕〔第70题〕〔第70题〕71.两个同心圆的半径之比为1:2,假设在大圆内任取一点,那么点在小圆内的概率为〔〕考点10:古典概型72.甲、乙等5名同学按任意次序排成一排,甲站中间且乙不站两边的概率为〔〕73.先后抛掷一枚质地均匀的硬币,那么两次均正面向上的概率为〔〕74.同时抛掷两枚质地均匀的硬币,那么两枚硬币均正面向上的概率为〔〕75.三个函数:,从中随机抽出一个函数,那么抽出的函数是偶函数的概率为〔〕76.一个口袋中装有大小一样、质地均匀的两个红球和两个白球,从中任意取出两个,那么这两个球颜色一样的概率是.77.将一枚质地均匀的骰子抛掷1次,出现的点数为偶数点的概率为〔〕78.有甲、乙、丙、丁4个同学,从中任选2个同学参加某项活动,那么所选2人中一定含有甲的概率为.79.同时掷两枚质地均匀的硬币,那么至少有一枚出现正面的概率是〔〕80.小王从装有2双不同手套的抽屉里,随机地取出2只,取出的手套都是左手的概率是〔〕考点11:函数的零点81.函数的零点所在的区间是〔〕82.函数的零点是〔〕83.函数的零点是〔〕84..函数的零点所在的区间是〔〕85.假设函数存在零点,那么实数的取值范围是〔〕86.如果二次函数有两个不同的零点,那么实数的取值范围是〔〕87.函数的零点所在的区间为〔〕y88.以以下列图象表示的函数能用二分法求零点的是〔〕yyyy0xy0x0xx00xx0CByACByADx0Dx0考点12:三角函数89.计算:的值为〔〕90.函数.〔1〕求它的最小正周期和最大值;〔2〕求它的递增区间.90.在中,,那么〔〕91.假设那么等于〔〕92.计算:的值为.93.函数〔1〕求的值及的最小正周期;〔2〕求的最大值和最小值.94.以下函数中,以为最小正周期的是〔〕95.花简96.函数.〔1〕求的值及的最大值;〔2〕求的递减区间.97.假设,那么等于〔〕98.扇形的圆心角为,弧长为,那么该扇形的面积为.99.〔1〕假设,求的值;〔2〕假设函数,当为何值时,取得最大值,并求出这个最大值.:函数,那么以下等式正确的选项是〔〕101.()102.函数.〔1〕求函数的最小正周期及函数取最小值时的取值集合;〔2〕画出函数在区间上的简图.103.〔〕104.为第二象限的角,,那么〔〕105.假设,那么的值为〕106.为第二象限的角,,那么的值为.107.函数〔1〕求函数的最小正周期和最大值;(2)函数的图象可由的图象经过怎样的变换得到108.的值为〔〕109.函数,那么是〔〕最小正周期为的奇函数最小正周期为的偶函数最小正周期为的奇函数最小正周期为的奇函数110.,且,那么角是〔〕第一象限的角第二象限的角第三象限的角第四象限的角考点12:解三角形〔正弦定理、余弦定理、三角形面积公式〕111.在中,、所对的边长分别是、,那么的值为〔〕112.在中,内角、、的对边分别为、、,假设,,,那么等于〔〕113.在中,、所对的分别是、、,其中,,,那么的面积为〔〕114.在中,内角、、的对边分别为、、,且,,,那么等于〔〕115.在中,,那么的大小为〔〕116.在锐角中,内角内角、、的对边分别为、、,假设,,.〔1〕求的值;〔2〕求的值117.在中,、、分别是角、、所对的边,且,,,那么角等于〔〕或或118.在中,内角内角、的对边分别为、,假设,,,那么=.119.在中,〔1〕假设三边长、、依次成等差数列,,求角的度数;〔2〕假设,求的值.考点13:线性规划120.实数、满足,那么的最小值等于〔〕121.假设实数、满足约束条件,那么的最大值等于.122.假设实数、满足约束条件,那么的最小值是.123.、满足条件,那么的最大值为.124.假设实数、满足约束条件,那么目标函数的最大值是.125.、满足约束条件,那么的最大值为〔〕126.两个非负实数、满足,那么的最小值为.考点14:函数〔三要数、奇偶性、单调性、基本初等函数及其应用〕127.函数的定义域是〔〕128.假设函数是冥函数,那么.129.关于的二次函数的图象与轴没有公共点,那么的取值范围是〔用区间表示〕.130.一个圆柱形容器的底部直径是,高是,现以每秒的速度向容器内注入某种溶液.〔1〕求容器内的溶液的高度关于注入溶液的时间的函数关系;〔2〕求此函数的定义域和值域.131.设,那么以下不等式中正确的选项是〔〕132.函数,那么以下说法正确的选项是〔〕是奇函数,且在上是增函数是奇函数,且在上是减函数是偶函数,且在上是增函数是偶函数,且在上是减函数133.函数在区间上的最大值为6,那么.134.某城市有一条长为的地铁新干线,市政府通过屡次价格听证,规定地铁运营公司按以下函数关系收费,,其中为票价〔单位:元〕,为里程〔单位:元〕.某人假设乘坐该地铁,该付费多少元甲、乙两人乘坐该地铁分别为、,谁在各自的行程内每得价格较低135.函数,那么以下说法中正确的选项是〔〕为奇函数,且在上是增函数为奇函数,且在上是减函数为偶函数,且在上是增函数为偶函数,且在上是减函数136.函数在区间上的最大值是.137.某商场的一种商品每件进价为10元,据调查知每日销售量〔件〕与销售单件〔元〕之间的函数关系为.设该商场日销售这种商品的利润为.〔单件利润=销售单价-进价;日销售利润=单件利润日销售量〕求函数的解析式;求该商场销售这种商品的日销售利润的最大值.138.偶函数在区间上单调递减,那么函数在区间上〔〕单点递增,且有最小值单点递增,且有最大值单点递减,且有最小值单点递减,且有最大值139.函数的定义域是〔〕140.在直角梯形中,,,且点为线段上的一动点,过点作直线.令,记梯形位于直线左侧局部的面积.(1)求函数的解析式;〔2〕作出函数的图象.141.函数,当时,都成立,那么的取值范围是.142.以下函数中,为偶函数的是〔〕143.函数在区间上的最小值为.144.函数那么的奇偶性为〔〕奇函数偶函数既是奇函数又是偶函数xy-3xy-3-2-1143210-11-2-34321145.函数.〔1〕在给定的直角坐标系中作出函数的图象;〔2〕求满足方程的的值.146.的值为〔〕147.是定义在上的偶函数,且在区间上为减函数,那么、、的大小关系是〔〕148.函数,那么的值为.149.2016年,某厂方案生产25吨至45吨的某种产品,生产该产品的总成本〔万元〕与总产量〔吨〕之间的关系可表示为〔1〕求该产品每吨的最低生产成本;〔2〕假设该产品每吨的出厂价为6万元,求该厂2016年获得利润的最大值.150.以下函数中,在区间上为增函数的是〔〕151.定义:对于函数,在使成立的所有常数中,我们把的最大值叫做函数的下确界,例如函数的下确界是,那么函数的下确界是〔〕152.函数满足条件:有唯一解.〔1〕求函数的解析式;〔2〕的值.考点15:数列〔等差数列、等比数列及其简单应用〕153.等比数列中,,那么数列的前4项的和等于〔〕154.数列中,.〔1〕求的值;〔2〕证明:(是等比数列;〔3〕求数列的通项公式.155.数列满足:.〔1〕求;〔2〕令,求证数列是等比数列;〔3〕求数列的前项和.156.数列是公比为实数的等比数列,且,那么等于〔〕157..正项数列的前项和为,且.〔1〕求;〔2〕求证:数列是等差数列;〔3〕令,问数列的前多少项的和最小最小值是多少158.递增等比数列满足:且是的等差中项.〔1〕求数列的通项公式;〔2〕假设数列的前项和为,求使成立的正整数的最大值.159.数列的首项,那么这个数列的第四项是〔〕160.等比数列中,.〔1〕求公比;〔2〕假设数列为等差数列,且满足,求数列的通项公式;〔3求数列的前项和.161.等差数列中,,那么〔〕162.设等比数列的前项和为,,假设,那么公比.163.假设等差数列中,,那么公差等于〔〕164.数列中,.〔1〕当时,求数列数列的通项公式;〔2〕当时,证明:数列数列为等比数列;〔3在〔2〕的条件下,记,证明:.165.设等差数列前项和为,假设,那么〔〕166.在等比数列中,,那么.考点16:基本不等式〔=1\*GB3①;=2\*GB3②〕167.假设那么的最大值为〔〕168.那么的最小值为〔〕169.假设正数、满足,那么的取值范围是〔〕考点17:抽样方法、统计、进位制、秦九韶算法、辗转相除法〔更相减损术〕170.某单位有甲、乙、丙三个部门,分别有职员27人、63人、和81人,现按分层抽样的方法从各部门中抽取组建一个代表队参加上级部门组织的某项活动;其中乙部门抽取7人,那么该单位共抽取人.171.甲、乙两位射击选手10次射击所的成绩,经计算得各自成绩的标准差分别为,那么成绩稳定.172.化二进制数为十进制数:.2523561132523561132〔第173题、174题〕174.如图是运发动在某个赛季得分的茎叶图,那么该运发动得分的中位数是〔〕175.,用秦九韶算法计算的值时,首先计算的最内层括号内一次多项式的值是〔〕67925780026132〔第176题〕40176.某工厂生产、、三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为的样本,其中67925780026132〔第176题〕40177.一组数据如以下列图,那么这组数据的中位数是〔〕178.样本数据:2,4,6,8,10的标准差为〔〕179.某学校学生高一年级有600人,高二年级有400人,高三年级有200人,现采用分层抽样的方法从这三个年级中抽取54人,那么从高三年级抽取的学生人数为人.180.某个样本数据的茎叶图如下,那么该样本数据的平均数83752828375282687〔第180题〕181.如图是某个学校举行歌唱比赛时七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和去掉一个最低分后,所剩数据的中位数和平均数依次是〔〕182.把十进制数34化为二进制数位〔〕183.某大学有、、三个不同校区,其中校区有4000人,校区有3000人,校区有2000人,采用分层抽样的方法,从中抽取900人参加一项活动,那么、、校区分别抽取〔〕184.某校有男生450人,女生500人,现用分层抽样的方法从全校学生中抽取一个容量为95的样本,那么抽出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023双方汽车租赁协议书七篇
- 色素性痒疹病因介绍
- 臂丛神经损伤病因介绍
- 个体防护用品基础知识
- 《模具设计与制造李集仁》课件-第6章
- (2024)清洁汽油项目可行性研究报告写作范本(一)
- 2024-2025年辽宁省锦州市第十二中学第三次月考英语问卷-A4
- 天津市五区县重点校联考2022-2023学年高二下学期期中考试语文试卷
- 电气施工对土建工程的 要求与配合- 电气施工技术98课件讲解
- 2023年监护病房项目筹资方案
- 2024年中国社会科学院招聘笔试冲刺题含答案解析
- 山东青岛幼儿师范高等专科学校招聘考试试题及答案
- 【川教版】《生命 生态 安全》五上第8课《防患于未“燃”》课件
- 卓有成效的管理者pdf
- 职务侵占罪预防
- 《芣苢》 统编版高中语文必修上册
- 幼儿数学核心经验通用课件
- 2024年英语必修第二册 Unit2 全单元教学设计
- 代理做账创业计划书
- 2023-2024学年人教部编统编版八年级上册历史期末检测卷(含答案解析)
- 设备维修和维护保养基础知识培训
评论
0/150
提交评论