2023届浙江省宁波市七中学教育集团数学九年级第一学期期末经典模拟试题含解析_第1页
2023届浙江省宁波市七中学教育集团数学九年级第一学期期末经典模拟试题含解析_第2页
2023届浙江省宁波市七中学教育集团数学九年级第一学期期末经典模拟试题含解析_第3页
2023届浙江省宁波市七中学教育集团数学九年级第一学期期末经典模拟试题含解析_第4页
2023届浙江省宁波市七中学教育集团数学九年级第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知二次函数,则下列说法:①其图象的开口向上;②其图象的对称轴为直线;③其图象顶点坐标为;④当时,随的增大而减小.其中说法正确的有()A.1个 B.2个 C.3个 D.4个2.关于反比例函数y=﹣,下列说法错误的是()A.图象经过点(1,﹣3)B.图象分布在第一、三象限C.图象关于原点对称D.图象与坐标轴没有交点3.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25π B.65π C.90π D.130π4.下列事件中,属于必然事件的是()A.2020年的除夕是晴天 B.太阳从东边升起C.打开电视正在播放新闻联播 D.在一个都是白球的盒子里,摸到红球5.如图,正方形的边长为,点在边上.四边形也为正方形,设的面积为,则()A.S=2 B.S=2.4C.S=4 D.S与BE长度有关6.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=7.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23元,连续两次上涨后,售价上升到每千克40元,则下列方程中正确的是()A. B.C. D.8.如图,在高2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要()A.2m B.(2+2)m C.4m D.(4+2)m9.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A. B. C. D.210.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组二、填空题(每小题3分,共24分)11.半径为10cm的半圆围成一个圆锥,则这个圆锥的高是__cm.12.在中,,,,则的长是__________.13.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点(1,0)作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的坐标为_________.14.若关于x的方程有两个不相等的实数根,则a的取值范围是________.15.因式分解:_______;16.计算:_____________.17.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.18.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.三、解答题(共66分)19.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2).(正方形网格中每个小正方形的边长是一个单位长度),(1)在正方形网格中画出△ABC绕点O顺时针旋转90°得到△A1B1C1.(2)求出线段OA旋转过程中所扫过的面积(结果保留π).20.(6分)如图,已知抛物线与x轴交于点A、B,与y轴分别交于点C,其中点,点,且.(1)求抛物线的解析式;(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点M的坐标.21.(6分)如图,方格纸中有三个点,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)22.(8分)如图,直线y=x+3分别交x轴、y轴于点A、C.点P是该直线与双曲线在第一象限内的一个交点,PB⊥x轴于B,且S△ABP=16.(1)求证:△AOC∽△ABP;(2)求点P的坐标;(3)设点Q与点P在同一个反比例函数的图象上,且点Q在直线PB的右侧,作QD⊥x轴于D,当△BQD与△AOC相似时,求点Q的横坐标.23.(8分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求的值;(2)求出小王一次拨对小李手机号的概率.24.(8分)解一元二次方程(1)(2)25.(10分)如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.(1)求证:;(2)如图2,交于点,若,点共线,其他条件不变,①判断四边形的形状,并说明理由;②当,,且四边形是正方形时,直接写出的长.26.(10分)解方程:x2-7x-18=0.

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用二次函数的图象和性质逐一对选项进行分析即可.【详解】①因为其图象的开口向上,故正确;②其图象的对称轴为直线,故错误;③其图象顶点坐标为,故错误;④因为抛物线开口向上,所以在对称轴右侧,即当时,随的增大而减小,故正确.所以正确的有2个故选:B.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.2、B【解析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【点睛】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3、B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.4、B【分析】根据必然事件和随机事件的概念进行分析.【详解】A选项:2020年的元旦是晴天,属于随机事件,故不合题意;

B选项:太阳从东边升起,属于必然事件,故符合题意;

C选项:打开电视正在播放新闻联播,属于随机事件,故不合题意;

D选项:在一个都是白球的盒子里,摸到红球,属于不可能事件,故不合题意.故选:B.【点睛】考查了确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件;注:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.5、A【分析】连接FB,根据已知可得到⇒△ABC与△AFC是同底等高的三角形,由已知可求得△ABC的面积为大正方形面积的一半,从而不难求得S的值.【详解】解:连接FB,∵四边形EFGB为正方形∴∠FBA=∠BAC=45°,∴FB∥AC,∴△ABC与△AFC是同底等高的三角形,∵2S△ABC=S正ABCD,S正ABCD=2×2=4,∴S=2故选A.【点睛】本题利用了正方形的性质,内错角相等,两直线平行的判定方法,及同底等高的三角形的面积相等的性质求解.6、B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式7、A【分析】根据增长率a%求出第一次提价后的售价,然后再求第二次提价后的售价,即可得出答案.【详解】根据题意可得:23(1+a%)2=40,故答案选择A.【点睛】本题考查的是一元二次方程在实际生活中的应用,比较简单,记住公式“增长后的量=增长前的量×(1+增长率)”.8、B【解析】如图,由平移的性质可知,楼梯表面所铺地毯的长度为:AC+BC,∵在△ABC中,∠ACB=90°,∠BAC=30°,BC=2m,∴AB=2BC=4m,∴AC=,∴AC+BC=(m).故选B.点睛:本题的解题的要点是:每阶楼梯的水平面向下平移后刚好与AC重合,每阶楼梯的竖直面向右平移后刚好可以与BC重合,由此可得楼梯表面所铺地毯的总长度为AC+BC.9、B【解析】连接AD∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,则圆的半径是.故选B.点睛:连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.10、D【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故答案选D.考点:事件概率的估计值.二、填空题(每小题3分,共24分)11、【分析】由半圆的半径可得出圆锥的母线及底面半径的长度,利用勾股定理即可求出圆锥的高.【详解】设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为5.【点睛】本题考查了圆锥的计算,利用勾股定理求出圆锥的高是解题的关键.12、【分析】根据cosA=可求得AB的长.【详解】解:由题意得,cosA=,∴cos45°=,解得AB=.故答案为:.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.13、【解析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】解:当x=1时,y=2,

∴点A1的坐标为(1,2);

当y=-x=2时,x=-2,

∴点A2的坐标为(-2,2);

同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,

∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),

A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).

∵2019=504×4+3,

∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).

故答案为(-21009,-21010).【点睛】本题考查一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.14、且【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】由题意得,解得且,故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.15、(a-b)(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),

故答案为:(a-b)(a-b+1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.16、1【分析】由题意首先计算乘方、开方和特殊三角函数,然后从左向右依次进行加减计算,即可求出算式的值.【详解】解:===1故答案为1.【点睛】本题主要考查实数的运算,要熟练掌握,解答此题的关键是要明确在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行;另外,有理数的运算律在实数范围内仍然适用.17、【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为.故答案为.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、4.8或【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以=,即=,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;

(2)利用扇形的面积公式计算.【详解】(1)如图,△A1B1C1为所作;(2)线段OA旋转过程中所扫过的面积==π.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、(1);(2)当时,S最大,此时;(3)或【分析】(1)先根据射影定理求出点,设抛物线的解析式为:,将点代入求出,然后化为一般式即可;(2)过点P作y轴的平行线交BC于点E,设,用待定系数法分别求出直线BC,直线AC,直线PD的解析式,表示出点E,点D的坐标,然后根据三角形面积公式列出二次函数解析式,利用二次函数的性质求解即可;(3)分两种情况求解:当时和当时.【详解】(1)∵,,∴,.∵,∴由射影定理可得:,∴,∴点,设抛物线的解析式为:,将点代入上式得:,∴抛物线的解析式为:;(2)过点P作y轴的平行线交BC于点E,设,设,把,代入得,∴,∴,∴,同样的方法可求,故可设,把代入得,联立解得:,∴,,故当时,S最大,此时;(3)由题知,,当时,,∴点C与点M关于对称轴对称,∴;当时,过M作于F,过F作y轴的平行线,交x轴于G,交过M平行于x轴的直线于K,∵∠,BFM=∠BGF,∴△MFK∽△FGB,同理可证:,∴,,设,则,∴,∴,代入,解得,或(舍去),∴,故或.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的图像与性质,一次函数图像交点坐标与二元一次方程组解的关系,相似三角形的判定与性质,以及分类讨论的数学思想,难度较大,属中考压轴题.21、(1)见解析;(2)见解析;(3)见解析.【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【详解】解:如图:22、(1)证明见解析;(2)点P的坐标为(2,4);(3)点Q的横坐标为:或.【分析】(1)利用PB∥OC,即可证明三角形相似;(2)由一次函数解析式,先求点A、C的坐标,由△AOC∽△ABP,利用线段比求出BP,AB的值,从而可求出点P的坐标即可;(3)把P坐标代入求出反比例函数,设Q点坐标为(n,),根据△BQD与△AOC相似分两种情况,利用线段比联立方程组求出n的值,即可确定出Q坐标.【详解】(1)证明:∵PB⊥x轴,OC⊥x轴,∴OC∥PB,∴△AOC∽△ABP;(2)解:对于直线y=x+3,令x=0,得y=3;令y=0,得x=-6;∴A(-6,0),C(0,4),∴OA=6,OC=3.∵△AOC∽△ABP,∴,∵S△ABP=16,S△AOC=,∴,∴,即,∴PB=4,AB=8,∴OB=2,∴点P的坐标为:(2,4).(3)设反比例函数的解析式为:y=,把P(2,4)代入,得k=xy=2×4=8,∴y=.点Q在双曲线上,可设点Q的坐标为:(n,)(n>2),则BD=,QD=,①当△BQD∽△ACO时,,即,整理得:,解得:或;②当△BQD∽△CAO时,,即,整理得:,解得:,(舍去),综上①②所述,点Q的横坐标为:1+或1+.【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,一次函数与反比例函数的交点,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.23、(1)14;(2).【分析】(1)根据题意求出11个数字之和,再根据和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论