版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列函数是二次函数的是()A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.2.如图,在△ABC中,∠A=90°,sinB=,点D在边AB上,若AD=AC,则tan∠BCD的值为()A. B. C. D.3.由的图像经过平移得到函数的图像说法正确的是()A.先向左平移6个单位长度,然后向上平移7个单位长度B.先向左平移6个单位长度,然后向下平移7个单位长度C.先向右平移6个单位长度,然后向上平移7个单位长度D.先向右平移6个单位长度,然后向下平移7个单位长度4.如图所示,在中,与相交于点,为的中点,连接并延长交于点,则与的面积比值为()A. B. C. D.5.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是()A.平均数 B.众数 C.方差 D.中位数6.在平面直角坐标系中,函数的图象经过变换后得到的图象,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向上平移2个单位 D.向下平移2个单位7.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)8.计算(的结果为()A.8﹣4 B.﹣8﹣4 C.﹣8+4 D.8+49.如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为().A.(0,﹣2) B.(0,﹣) C.(0,﹣) D.(0,﹣)10.在比例尺为1:10000000的地图上,测得江华火车站到永州高铁站的距离是2cm,那么江华火车站到永州高铁站的实际距离为()kmA.20000000 B.200000 C.2000 D.20011.关于的一元二次方程有实数根,则满足()A. B.且 C.且 D.12.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-) D.P(-2,3),Q(-3,-2)二、填空题(每题4分,共24分)13.如图,是等腰直角三角形,,以BC为边向外作等边三角形BCD,,连接AD交CE于点F,交BC于点G,过点C作交AB于点下列结论:;∽;;则正确的结论是______填序号14.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,设每件衬衫应降价x元,则所列方程为_______________________________________.(不用化简)15.方程的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.16.步步高超市某种商品为了去库存,经过两次降价,零售价由100元降为64元.则平均每次降价的百分率是____________.17.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.18.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为____.三、解答题(共78分)19.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.20.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.(1)画出关于轴的对称图形;(2)将以为旋转中心顺时针旋转90°得到,画出旋转后的图形,并求出旋转过程中线段扫过的扇形面积.21.(8分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.762.463.665.966.468.569.169.369.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.(10分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?23.(10分)如图,为了测量山脚到塔顶的高度(即的长),某同学在山脚处用测角仪测得塔顶的仰角为,再沿坡度为的小山坡前进400米到达点,在处测得塔顶的仰角为.(1)求坡面的铅垂高度(即的长);(2)求的长.(结果保留根号,测角仪的高度忽略不计).24.(10分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.25.(12分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?26.解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数的定义作出判断.【详解】解:A、该函数属于一次函数,故本选项错误;B、该函数未知数在分母位置,不符合二次函数的定义,故本选项错误;C、该函数符合二次函数的定义,故本选项正确;D、该函数只有一个变量不符合二次函数的定义,故本选项错误;故选:C.【点睛】此题考查的是二次函数的判断,掌握二次函数的定义是解决此题的关键.2、C【分析】作DE⊥BC于E,在△CDE中根据已知条件可求得DE,CE的长,从而求得tan∠BCD.【详解】解:作DE⊥BC于E.∵∠A=90°,sinB=,设AC=3a=AD,则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=a,∴根据勾股定理,得BE=a,∴CE=BC-BE=a,∴tan∠BCD=故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.3、C【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.【详解】解:抛物线y=2x2的顶点坐标为(0,0),
抛物线y=2(x-6)2+1的顶点坐标为(6,1),所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x2平移得到抛物线y=2(x-6)2+1.
故选:C.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.4、C【分析】根据平行四边形的性质得到OB=OD,利用点E是OD的中点,得到DE:BE=1:3,根据同高三角形面积比的关系得到S△ADE:S△ABE=1:3,利用平行四边形的性质得S平行四边形ABCD=2S△ABD,由此即可得到与的面积比.【详解】在中,OB=OD,∵为的中点,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四边形ABCD=2S△ABD,∴与的面积比为3:8,故选:C.【点睛】此题考查平行四边形的性质,同高三角形面积比,熟记平行四边形的性质并熟练运用解题是关键.5、D【分析】根据中位数的定义即位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数进行分析即可.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点睛】本题考查统计量的选择,解题的关键是了解中位数的定义,难度较小.6、A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】,顶点坐标为,,顶点坐标为,所以函数的图象向左平移2个单位后得到的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.7、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,∵其中一个交点的坐标为,则另一个交点的坐标为,故选C.【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.8、B【分析】先按照平方差公式与完全平方公式计算,同时按照二次根式的除法计算,再合并即可得到答案.【详解】解:故选B.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的乘法与二次根式的除法运算是解本题的关键.9、B【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.【详解】如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得,解得,y=x2+4x+2=(x+2)2-2,M(-2,-2),N点关于y轴的对称点N′(1,-1),设MN′的解析式为y=kx+b,将M、N′代入函数解析式,得,解得,MN′的解析式为y=x-,当x=0时,y=-,即P(0,-),故选:B.【点睛】本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P点的坐标是解题关键.10、D【分析】由题意根据图上的距离与实际距离的比就是比例尺,列出比例式求解即可.【详解】解:设江华火车站到永州高铁站的实际距离为xcm,根据题意得:2:x=1:10000000,解得:x=20000000,20000000cm=200km.故江华火车站到永州高铁站的实际距离为200km.故选:D.【点睛】本题主要考查比例线段,解题的关键是熟悉比例尺的含义进行分析.11、C【分析】根据一元二次方程有实数根得到△且,解不等式求出的取值范围即可.【详解】解:关于的一元二次方程有实数根,△且,△且,且.故选:.【点睛】本题考查了一元二次方程的根的判别式△:当△,方程有两个不相等的实数根;当△,方程有两个相等的实数根;当△,方程没有实数根.12、C【解析】根据反比函数的解析式y=(k≠0),可得k=xy,然后分别代入P、Q点的坐标,可得:-2×(-3)=6≠3×(-2),故不在同一反比例函数的图像上;2×(-3)=-6≠2×3,故不正确同一反比例函数的图像上;2×3=6=(-4)×(-),在同一反比函数的图像上;-2×3≠(-3)×(-2),故不正确同一反比例函数的图像上.故选C.点睛:此题主要考查了反比例函数的图像与性质,解题关键是求出函数的系数k,比较k的值是否相同来得出是否在同一函数的图像上.二、填空题(每题4分,共24分)13、②③④【分析】根据题意证明∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC即可证明②正确,①错误,在△AEF中利用特殊三角函数即可证明③正确,在Rt△AOC中,利用即可证明④正确.【详解】解:由题可知,∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC,∴∠ACD=150°,∴∠CDA=∠CAD=15°,∴∠FCG=∠BDG=45°,∴,②正确,①错误,∵易证∠FAE=30°,设EF=x,则AE=CE=,∴,③正确,设CH与AD交点为O,易证∠FCO=30°,设OF=y,则CF=2y,由③可知,EF=()y,∴AF=()y,在Rt△AOC中,.故②③④正确.【点睛】本题考查了相似三角形的判定,特殊的直角三角形,三角函数的简单应用,难度较大,熟知特殊三角函数值是解题关键.14、(40-x)(2x+20)=1200【解析】试题解析:每件衬衫的利润:销售量:方程为:故答案为:点睛:这个题目属于一元二次方程的实际应用,利用销售量每件利润=总利润,列出方程即可.15、1.【详解】解:,得x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=1.故答案是:116、20%【分析】设平均每次降价的百分率是x,根据“经过两次降价,零售价由100元降为64元”,列出一元二次方程,求解即可.【详解】设平均每次降价的百分率是x,根据题意得:100(1﹣x)2=64,解得:x1=0.2,x2=1.8(舍去),即平均每次降价的百分率是20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.17、甲【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为甲.【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、1【分析】利用角角定理证明△BAD∽△BCA,然后利用相似三角形的性质得到,求得BC的长,从而使问题得解.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴.∵AB=6,BD=4,∴,∴BC=9,∴CD=BC-BD=9-4=1.【点睛】本题考查相似三角形的判定与性质,熟记判定方法准确找到相似三角形对应边是本题的解题关键..三、解答题(共78分)19、(1)抽样调查;12;3;(2)60;(3).【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.20、(1)见解析;(2)见解析,【分析】(1)根据图形对称的性质,关于轴对称,相等,互为相反数.(2)根据扇形的面积S=即可解得.【详解】解:(1)(2)【点睛】本题考查图形的对称,扇形的面积公式.21、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;
(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;
(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;
(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【详解】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,
∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,
故答案为17;
(2)如图所示:
(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;
故答案为2.8;
(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,
①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;
故答案为①②.【点睛】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案为1.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2.当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为3.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为3.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.23、(1)200;(2).【分析】(1)根据AB的坡度得,再根据∠BAH的正弦和斜边长度即可解答;(2)过点作于点,得到矩形,再设米,再由∠DBE=60°的正切值,用含x的代数式表示DE的长,而矩形中,CE=BH=200米,可得DC的长,米,最后根据△ADC是等腰三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《历史教学技能实训》2022-2023学年第一学期期末试卷
- 合同法81条对应民法典
- 大班数学课件《比较多少》
- 专题 10习作训练 -2022-2023学年四年级语文下册期末专项复习(部编版)
- 2024常用房屋租赁合同范本2
- 2024买卖合同无效的条件
- 按客户来函制定外销合同(2篇)
- 关于机械类实习报告模板集合五篇
- 旅游局长述职报告
- 家庭心理治疗师招聘合同
- GB/T 44536-2024CVD陶瓷涂层热膨胀系数和残余应力试验方法
- 纸夹子市场分析及投资价值研究报告
- 神州十三号飞船知识科普宣传主题
- 《大学生创新创业基础教程》第六章创业资源与融资
- 专职会计劳务合同模板
- 2024年秋新沪教牛津版英语三年级上册课件 Unit 5 第2课时
- 中图版七年级下册信息技术 2.1规划影片任务 教学设计
- 2024中科院心理咨询师考试复习题库(官方版)-上单选题汇
- 2024新人教版道法一年级上册第四单元:我们讲文明大单元整体教学设计
- 造价咨询外包业务管理办法
- 电工基础知识入门
评论
0/150
提交评论