版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,菱形ABCD与等边△AEF的边长相等,且E、F分别在BC、CD,则∠BAD的度数是()A.80° B.90° C.100° D.120°2.根据下表中的二次函数y=ax2+bx+c的自变量x与函数yx
…
-1
0
1
2
…
y
…
-1
-7-2
-7…A.只有一个交点 B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧 D.无交点3.若,面积之比为,则相似比为()A. B. C. D.4.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数的图像上,若菱形的边长为4,则k值为()A. B. C. D.5.当取下列何值时,关于的一元二次方程有两个相等的实数根()A.1. B.2 C.4. D.6.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2 B.3 C.4 D.57.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m29.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为()A. B. C. D.10.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是()A. B. C. D.二、填空题(每小题3分,共24分)11.在平面直角坐标系中,若点与点关于原点对称,则__________.12.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行m才能停下来.13.小慧准备给妈妈打个电话,但她只记得号码的前位,后三位由,,这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.14.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.15.如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是______.16.如图,抛物线与轴交于两点,是以点为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是________.17.如图,位似图形由三角尺与其灯光下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为_______㎝.18.阅读下列材料,我们知道,因此将的分子分母同时乘以“”,分母就变成了4,即,从而可以达到对根式化简的目的,根据上述阅读材料解决问题:若,则代数式m5+2m4﹣2017m3+2016的值是_____.三、解答题(共66分)19.(10分)如图,抛物线与轴交于两点,与轴交于点,且.直线与抛物线交于两点,与轴交于点,点是抛物线的顶点,设直线上方的抛物线上的动点的横坐标为.(1)求该抛物线的解析式及顶点的坐标.(2)连接,直接写出线段与线段的数量关系和位置关系.(3)连接,当为何值时?(4)在直线上是否存在一点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.20.(6分)某商场销售一种商品,若将50件该商品按标价打八折销售,比按原标价销售这些商品少获利200元.求该商品的标价为多少元;已知该商品的进价为每件12元,根据市场调查:若按中标价销售,该商场每天销售100件;每涨1元,每天要少卖5件那么涨价后要使该商品每天的销售利润最大,应将销售价格定为每件多少元?最大利润是多少?21.(6分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且.(1)求的长;(2)若,求.22.(8分)用一段长为28m的铁丝网与一面长为8m的墙面围成一个矩形菜园,为了使菜园面积尽可能的大,给出了甲、乙两种围法,请通过计算来说明这个菜园长、宽各为多少时,面积最大?最大面积是多少?23.(8分)已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?24.(8分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出件,每件获利元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价元,则平均每天可多售出件,要想平均每天在销售这种童装上获利元,那么每件童装应降价多少元?25.(10分)先化简,再求值:(1+),其中,x=﹣1.26.(10分)在“美丽乡村”建设中,某村施工人员想利用如图所示的直角墙角,计划再用30米长的篱笆围成一个矩形花园,要求把位于图中点处的一颗景观树圈在花园内,且景观树与篱笆的距离不小2米.已知点到墙体、的距离分别是8米、16米,如果、所在两面墙体均足够长,求符合要求的矩形花园面积的最大值.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据菱形的性质推出∠B=∠D,AD∥BC,根据平行线的性质得出∠DAB+∠B=180°,根据等边三角形的性质得出∠AEF=∠AFE=60°,AF=AD,根据等边对等角得出∠B=∠AEB,∠D=∠AFD,设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°﹣60°﹣2x)=180°,求出方程的解即可求出答案.解:∵四边形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°﹣∠EAF﹣(∠BAE+∠FAD)=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠BAD=2×20°+60°=100°,故选C.考点:菱形的性质;全等三角形的判定与性质;等边三角形的性质.2、B【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.3、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,
∴它们的相似比为3:1.
故选:C.【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.4、C【分析】由题意根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值.【详解】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,C的横轴坐标为,C的纵轴坐标为,∴点C的坐标为(-2,),∵顶点C在反比例函数的图象上,∴=,得k=,故选:C.【点睛】本题考查反比例函数图像以及菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.5、A【分析】根据一元二次方程的判别式判断即可.【详解】要使得方程由两个相等实数根,判别式△=(-2)2-4m=4-4m=0,解得m=1.故选A.【点睛】本题考查一元二次方程判别式的计算,关键在于熟记判别式与根的关系.6、B【解析】分析:根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=1即可.详解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=1.故选B.点睛:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.7、C【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C8、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.9、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.10、D【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当,,所以∽,故条件①能判定相似,符合题意;当,,所以∽,故条件②能判定相似,符合题意;当,即AC::AC,因为所以∽,故条件③能判定相似,符合题意;当,即PC::AB,而,所以条件④不能判断和相似,不符合题意;①②③能判定相似,故选D.【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
∴a=-4,b=-3,
则ab=1.
故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.12、1.【解析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.∵﹣1.5<0,∴函数有最大值.∴,即飞机着陆后滑行1米才能停止.13、【解析】首先根据题意可得:可能的结果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【详解】∵她只记得号码的前5位,后三位由5,1,2,这三个数字组成,∴可能的结果有:512,521,152,125,251,215;∴他第一次就拨通电话的概率是:故答案为.【点睛】考查概率的求法,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的之比.14、3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案为3.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.15、【分析】根据题意算出正方形的面积和内切圆面积,再利用几何概率公式加以计算,即可得到所求概率.【详解】解:∵正方形的边长为4,
∴正方形的面积S正方形=16,内切圆的半径r=2,
因此,内切圆的面积为S内切圆=πr2=4π,可得米落入圆内的概率为:故答案为:【点睛】本题考查几何概率、正多边形和圆,解答本题的关键是明确题意,属于中档题.16、3.1【分析】连接BP,如图,先解方程=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【详解】连接BP,如图,当y=0时,=0,解得x1=4,x2=−4,则A(−4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=∴BP′=1+2=7,∴线段OQ的最大值是3.1,故答案为:3.1.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.17、20cm【详解】解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm,∴投影三角形的对应边长为:8÷=20cm.故选B.【点睛】本题主要考查了位似图形的性质以及中心投影的应用,根据对应边的比为2:5,再得出投影三角形的对应边长是解决问题的关键.18、2016【分析】首先对m这个式子进行分母有理化,然后观察要求值的代数式进行拆分代入运算即可.【详解】∵===,∴m+1=,∴,∴,∴原式==2016.故答案为:2016.【点睛】本题考查了二次根式的分母有理化,代数式的求值,观察代数式的特点拆分代入是解题的关键.三、解答题(共66分)19、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)【分析】(1)直线y=x+1与抛物线交于A点,可得点A和点E坐标,则点B、C的坐标分别为:(3,0)、(0,3),即可求解;(2)CQ==AE,直线AQ和AE的倾斜角均为45°,即可求解;(3)根据题意将△APD的面积和△DAB的面积表示出来,令其相等,即可解出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【详解】解:(1)直线与抛物线交于点,则点、点.∵,∴点的坐标为,故抛物线的表达式为,将点的坐标代入,得,解得,故抛物线的表达式为,函数的对称轴为,故点的坐标为.(2)CQ=AE,且CQ∥AE,理由是:,,∴CQ=AE,直线CQ表达式中的k==1,与直线AE表达式中k相等,故AE∥CQ,
故线段CQ与线段AE的数量关系和位置关系是平行且相等;(3)联立直线与抛物线的表达式,并解得或2.故点.如图1,过点作轴的平行线,交于点,设点,则点.解得或1.(4)存在,理由:设点,点,,而点,①当时,如图2,过点作轴的平行线,分别交过点、点与轴的平行线于点、,,,,,,在△PGQ和△HMP中,,,,,即:,,解得m=2或n=3,当n=3时,解得:或2(舍去),故点P;②当时,如图3,,则点、关于抛物线对称轴对称,即垂直于抛物线的对称轴,而对称轴与轴垂直,故轴,则,可得:△MQP和△NQH都是等腰直角三角形,MQ=MP,∵MQ=1-m,MP=4-n,∴n=3+m,代入,解得:或1(舍去),故点P;③当时,如图4所示,点在下方,与题意不符,故舍去.如图5,P在y轴右侧,同理可得△PHK≌△HQJ,可得QJ=HK,∵QJ=t-1,HK=t+1-n,∴t-1=t+1-n,∴n=2,∴,解得:m=(舍去)或,∴点P(,2)综上,点的坐标为:或(,2)【点睛】本题考查的是二次函数综合运用,难度较大,涉及到一次函数、三角形全等、图形的面积计算等,要注意分类求解,避免遗漏.20、(1)20;(2)26,980.【分析】(1)设该商品的标价为x元,根据按标价的八折销售该商品50件比按标价销售该商品50件所获得的利润少200元,列方程求解;(2)设该商品每天的销售利润为y元,销售价格定为每件x元,列出y关于x的函数解析式,求出顶点坐标即可得解.【详解】解:设该商品的标价为a元,由题意可得:,解得:;答:该商品的标价为20元;设该商品每天的销售利润为y元,销售价格定为每件x元,由题意可得:;,所以销售单价为26元时,商品的销售利润最大,最大利润是980元.【点睛】本题考查了一元一次方程的应用和运用二次函数解决实际问题.21、(1)6;(2)4【分析】(1)连接EF,证明△EFG∽△DCG.推出,求出DE即可解决问题.(2)由三角形的高相同,则三角形的面积之比等于底边之比,求出,,即可求出答案.【详解】解:(1)连接.∵是平行四边形,∴点为的中点.∵为的中点,∴,且.∴.∴∵,∴,∴,∴;(2)∵,,,∴,∴,∵BE=DE,∴∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.【分析】根据矩形的面积公式甲图列出算式可以直接求面积,乙图设垂直于墙的一边为x,则另一边为(18﹣x)(包括墙长)列出二次函数解析式即可求解.【详解】解:如图甲:设矩形的面积为S,则S=8×(18﹣8)=2.所以当菜园的长、宽分别为10m、8m时,面积为2;如图乙:设垂直于墙的一边长为xm,则另一边为(18﹣1x﹣8)+8=(18﹣x)m.所以S=x(18﹣x)=﹣x1+18x=﹣(x﹣9)1+81因为﹣1<0,当x=9时,S有最大值为81,所以当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.综上:当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.【点睛】本题考查了二次函数的应用,难度一般,关键在于找到等量关系列出方程求解,另外注意配方法求最大值在实际中的应用23、(1)当m为1时,四边形ABCD是菱形,边长是;(2)▱ABCD的周长是1.【分析】(1)根据菱形的性质可得出AB=AD,结合根的判别式,即可得出关于m的一元二次方程,解之即可得出m的值,将其代入原方程,解之即可得出菱形的边长;(2)将x=2代入原方程可求出m的值,将m的值代入原方程结合根与系数的关系可求出方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年北京牛栏山一中高三(上)期中地理试题和答案
- 学期教学工作计划加强社会实践
- 患者住院病历模板
- 音乐历史概述-音乐历史探索
- 发现潜能社团培养创造力计划
- 教师外出学习与交流计划
- 校园广播社团播音方案计划
- 品牌故事在消费决策中的角色计划
- 利用社交媒体提升个人品牌计划
- 投资收益分析报告计划
- 12J201平屋面建筑构造图集(完整版)
- 外研版七年级英语上册教学课件Unit-1-Lesson-4-Reading-for-writing
- 《分数混合运算(一)》(教学设计)-2024-2025学年六年级上册数学北师大版
- 8《列夫-托尔斯泰》说课稿
- 人教版(2024)第四单元-汉语拼音《ai-ei-ui》教学课件
- 植皮的护理查房
- 北师大版小学数学四年级上册第2单元线与角《旋转与角》公开课教学课件
- TBIA 24-2024 骨科疾病诊疗数据集-慢性骨髓炎
- 文化行业文化遗产保护与数字化传承方案
- 食品安全与质量检测技能大赛考试题库400题(含答案)
- 项目风险记录及跟踪表
评论
0/150
提交评论