版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若点,是函数上两点,则当时,函数值为()A.2 B.3 C.5 D.102.已知点都在反比例函数为常数,且)的图象上,则与的大小关系是()A. B.C. D.3.下列实数中,有理数是()A.﹣2 B. C.﹣1 D.π4.如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A. B. C. D.5.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27° B.34° C.36° D.54°6.抛物线y=-2(x+3)2-4的顶点坐标是:A.(3,-4) B.(-3,4) C.(-3,-4) D.(-4,3)7.下列一元二次方程中,有一个实数根为1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=08.的值是()A. B. C. D.9.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.423110.在平面直角坐标系中,的直径为10,若圆心为坐标原点,则点与的位置关系是()A.点在上 B.点在外 C.点在内 D.无法确定二、填空题(每小题3分,共24分)11.如图,⊙O经过A,B,C三点,PA,PB分别与⊙O相切于A,B点,∠P=46°,则∠C=_____.12.已知,则=__________.13.如图,等边边长为2,分别以A,B,C为圆心,2为半径作圆弧,这三段圆弧围成的图形就是著名的等宽曲线——鲁列斯三角形,则该鲁列斯三角形的面积为___________.14.一支反比例函数,若,则y的取值范围是_____.15.如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为_______.16.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)17.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.18.如图,平行四边形ABCD的一边AB在x轴上,长为5,且∠DAB=60°,反比例函数y=和y=分别经过点C,D,则AD=_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=1.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO=S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.20.(6分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.21.(6分)如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.22.(8分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.23.(8分)已知点在二次函数的图象上,且当时,函数有最小值1.(1)求这个二次函数的表达式.(1)如果两个不同的点,也在这个函数的图象上,求的值.24.(8分)在校园文化艺术节中,九年级(1)班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,恰好选到男生是事件(填随机或必然),选到男生的概率是.(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图的方法,求刚好是一男生和一女生的概率.25.(10分)已知关于的一元二次方程.(1)若方程有实数根,求的取值范围;(2)若方程的两个实数根的倒数的平方和等于14,求的值.26.(10分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,可求得x=x1+x2=2,把x=2代入函数关系式即可求解.【详解】∵点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,对称轴为直线x=1,∴x1+x2=2×1=2,∴x=2,∴把x=2代入函数关系式得y=22﹣2×2+1=1.故选:B.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,以及二次函数的性质.求出x1+x2的值是解答本题的关键.2、B【分析】由m2>0可得-m2<0,根据反比例函数的性质可得的图象在二、四象限,在各象限内,y随x的增大而增大,根据各点所在象限及反比例函数的增减性即可得答案.【详解】∵m为常数,,∴m2>0,∴-m2<0,∴反比例函数的图象在二、四象限,在各象限内,y随x的增大而增大,∵-2<-1<0,1>0,∴0<y1<y2,y3<0,∴y3<y1<y2,故选:B.【点睛】本题考查反比例函数的性质,对于反比例函数y=(k≠0),当k>0时,函数图象在一、三象限,在各象限,y随x的增大而减小;当k<0时,函数图象在二、四象限,在各象限,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.3、A【分析】根据有理数的定义判断即可.【详解】A、﹣2是有理数,故本选项正确;B、是无理数,故本选项错误;C、﹣1是无理数,故本选项错误;D、π是无理数,故本选项错误;故选:A.【点睛】本题考查有理数和无理数的定义,关键在于牢记定义.4、C【分析】先分别求出正方形和三角形的面积,然后根据概率公式即可得出答案.【详解】正方形的面积=1×4=4三角形的面积=∴落在△ABC内部的概率=故答案选择C.【点睛】本题考查的是概率的求法,解题的关键是用面积之比来代表事件发生的概率.5、C【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.故选C.考点:切线的性质.6、C【解析】试题分析:抛物线的顶点坐标是(-3,-4).故选C.考点:二次函数的性质.7、D【分析】由题意,把x=1分别代入方程左边,然后进行判断,即可得到答案.【详解】解:当x=1时,分别代入方程的左边,则A、1+2=,故A错误;B、1-4+4=1,故B错误;C、1+4+10=15,故C错误;D、1+4-5=0,故D正确;故选:D.【点睛】本题考查了一元二次方程的解,解题的关键是分别把x=1代入方程进行解题.8、D【解析】根据负整数指数幂的运算法则进行求解即可.【详解】=,故选D.【点睛】本题考查了负整数指数幂,熟练掌握(a≠0,p为正整数)是解题的关键.9、B【解析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.【详解】解:时间由早到晚的顺序为1.
故选B.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.10、B【分析】求出P点到圆心的距离,即OP长,与半径长度5作比较即可作出判断.【详解】解:∵,∴OP=,∵的直径为10,∴r=5,∵OP>5,∴点P在外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.二、填空题(每小题3分,共24分)11、67°【分析】根据切线的性质定理可得到∠OAP=∠OBP=90°,再根据四边形的内角和求出∠AOB,然后根据圆周角定理解答.【详解】解:∵PA,PB分别与⊙O相切于A,B两点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案为:67°.【点睛】本题考查了圆的切线的性质、四边形的内角和和圆周角定理,属于常见题型,熟练掌握上述知识是解题关键.12、【分析】根据比例的性质,化简求值即可.【详解】故答案为:.【点睛】本题主要考察比例的性质,解题关键是根据比例的性质化简求值.13、【分析】求出一个弓形的面积乘3再加上△ABC的面积即可.【详解】过A点作AD⊥BC,∵△ABC是等边三角形,边长为2,∴AC=BC=2,CD=BC=1∴AD=∴弓形面积=.故答案为:【点睛】本题考查的是阴影部分的面积,掌握扇形的面积计算及等边三角形的面积计算是关键.14、y<-1【分析】根据函数解析式可知当x>0时,y随x的增大而增大,求出当x=1时对应的y值即可求出y的取值范围.【详解】解:∵反比例函数,-4<0,∴当x>0时,y随x的增大而增大,当x=1时,y=-1,∴当,则y的取值范围是y<-1,故答案为:y<-1.【点睛】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性.15、【分析】由勾股定理求出BC的长,再证明四边形DEAF是矩形,可得EF=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=9,AC=12,
∴在Rt△ABC中,利用勾股定理得:BC===15,
∵DE⊥AB,DF⊥AC,∠BAC=90°
∴∠DEA=∠DFA=∠BAC=90°,
∴四边形DEAF是矩形,
∴EF=AD,GF=EF
∴当AD⊥BC时,AD的值最小,
此时,△ABC的面积=AB×AC=BC×AD,
∴AD===,
∴EF=AD=,因此EF的最小值为;又∵GF=EF∴GF=×=
故线段GF的最小值为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,,∴,设,则,,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.17、y=2(x-2)2+3【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,
故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.18、1【分析】设点C(),则点D(),然后根据CD的长列出方程,求得x的值,得到D的坐标,解直角三角形求得AD.【详解】解:设点C(),则点D(),∴CD=x﹣()=∵四边形ABCD是平行四边形,∴CD=AB=5,∴=5,解得x=1,∴D(﹣3,),作DE⊥AB于E,则DE=,∵∠DAB=60°,故答案为:1.【点睛】本题考查的是平行四边形的性质、反比例性质、特殊角的三角函数值,利用平行四边形性质和反比例函数的性质列出等式是解题的关键.三、解答题(共66分)19、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n),利用反比例函数图像上的点的坐标特征可求出m的值,之后进一步求出n的值,然后进一步求解即可;(2)根据三角形的面积公式与矩形的面积公式结合S△PAO=S四边形OABC即可进一步求出P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的总坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,4),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用两点间的距离公式可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用两点间的距离公式可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.【详解】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO=S四边形OABC,∴OA∙yP=OA∙OC,∴yP=OC=4.当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(3,0),点B的坐标为(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴点P1的坐标为(1,4).又∵P1Q1=AB=5,∴点Q1的坐标为(1,3);(ii)当BP=AB时,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴点P2的坐标为(3﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(3﹣2,﹣1).综上所述:点Q的坐标为(1,3)或(3﹣2,﹣1).【点睛】本题主要考查了反比例函数的综合运用,熟练掌握相关概念是解题关键.20、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)【解析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.21、(1)30°;(2)3【分析】(1)由题意证明△CDE≌△COE,从而得到△OCD是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=AC=3,然后利用30°角的正切值求得DE=,然后根据题意求得OD=2DE=2,直径BD=2OD=4,从而使问题得解.【详解】解:连接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等边三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC垂直平分OD∴AE=AC=3又∵由(1)可知,在Rt△DAE中,∠DAC=30°∴,即∴DE=∵弦AC垂直平分OD∴OD=2DE=2∴直径BD=2OD=4∴BE=BD-DE=4-=3【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.22、(1),;(2)x<-2,或0<x<1【分析】(1)把A(1,-k+4)代入解析式,即可求出k的值;把求出的A点坐标代入一次函数的解析式,即可求出b的值;从而求出这两个函数的表达式;
(2)将两个函数的解析式组成方程,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【详解】解:(1)由题意,得,∴k=2,∴A(1,2),2=b+1∴b=1,反比例函数表达式为:,一次函数表达式为:.(2)又由题意,得,,解得∴B(-2,-1),∴当x<-2,或0<x<1时,反比例函数大于一次函数的值.【点睛】本题考查了一次函数与反比例函数的综合,能正确看图象是解题的关键.23、(1);(1)【分析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024新型环保被褥采购合作协议样本版
- 电子工程安全设计施工协议
- 2024-2030年超导材料产品入市调查研究报告
- 2024-2030年质量检验检测产业市场深度调研及竞争格局与投资价值研究报告
- 2024-2030年装箱机行业市场现状供需分析及投资评估规划分析研究报告
- 电子商务营销策划服务合同
- 2024-2030年融资租赁项目商业计划书
- 2024-2030年藤椒油市场营销创新及投资运行状况监测分析报告
- 2024-2030年葡萄酒企业创业板IPO上市工作咨询指导报告
- 2024-2030年自动化解决方案行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年中国花生脱壳机行业市场发展趋势与前景展望战略分析报告
- 2024-2030年中国猪油行业市场现状供需分析及投资评估规划分析研究报告
- Unit 1 This is my new friend. Lesson 1(教学设计)-2024-2025学年人教精通版英语四年级上册
- 2024年山西省中考生物卷试题解读及答案详解(精校打印版)
- 主管领导对分管领导廉政谈话记录
- 2024年江苏省高考政治试卷(真题+答案)
- 电梯安装改造维修质量保证手册-电梯资质认证用资料正规机构编制符合TSG-2019要求
- 人音版音乐一年级上册第3课《中华人民共和国国歌》齐唱说课稿
- 六年级上册道德与法治全册教学课件
- 39 《出师表》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 2024政府采购框架协议书
评论
0/150
提交评论