2023届文山市重点中学数学九上期末质量跟踪监视模拟试题含解析_第1页
2023届文山市重点中学数学九上期末质量跟踪监视模拟试题含解析_第2页
2023届文山市重点中学数学九上期末质量跟踪监视模拟试题含解析_第3页
2023届文山市重点中学数学九上期末质量跟踪监视模拟试题含解析_第4页
2023届文山市重点中学数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.一次函数y=﹣3x﹣2的图象和性质,表述正确的是()A.y随x的增大而增大 B.在y轴上的截距为2C.与x轴交于点(﹣2,0) D.函数图象不经过第一象限2.化简的结果是()A. B. C. D.3.如图的几何体由6个相同的小正方体搭成,它的主视图是()A. B. C. D.4.如图,,则下列比例式错误的是()A. B. C. D.5.如图,反比例函数y=与y=的图象上分别有一点A,B,且AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,若矩形ABCD的面积为8,则b﹣a=()A.8 B.﹣8 C.4 D.﹣46.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤127.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是()A.4.5米 B.8米 C.5米 D.5.5米8.如图,在中,,为上一点,,点从点出发,沿方向以的速度匀速运动,同时点由点出发,沿方向以的速度匀速运动,设运动时间为,连接交于点,若,则的值为()A.1 B.2 C.3 D.49.如图,在中,,已知,把沿轴负方向向左平移到的位置,此时在同一双曲线上,则的值为()A. B. C. D.10.我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,正方形的边长为8,点在上,交于点.若,则长为__.12.如图AC,BD是⊙O的两条直径,首位顺次连接A,B,C,D得到四边形ABCD,若AD=3,∠BAC=30°,则图中阴影部分的面积是______.13.如图,的半径为,的面积为,点为弦上一动点,当长为整数时,点有__________个.14.如图,在中,,点D、E分别在边、上,且,如果,,那么________.15.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.16.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.17.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为______.18.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是____.三、解答题(共66分)19.(10分)阅读材料材料1:若一个自然数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.材料2:对于一个三位自然数,将它各个数位上的数字分别2倍后取个位数字,得到三个新的数字,,,我们对自然数规定一个运算:.例如:是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2.则.请解答:(1)一个三位的“对称数”,若,请直接写出的所有值,;(2)已知两个三位“对称数”,若能被11整数,求的所有值.20.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.21.(6分)如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC于点D,交AB于点G,过D作DE⊥AC,垂足为E.(1)DE与⊙O有什么位置关系,请写出你的结论并证明;(2)若⊙O的半径长为3,AF=4,求CE的长.22.(8分)探究题:如图1,和均为等边三角形,点在边上,连接.(1)请你解答以下问题:①求的度数;②写出线段,,之间数量关系,并说明理由.(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.23.(8分)教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):先出示问题(1):如图1,在等边三角形中,为上一点,为上一点,如果,连接、,、相交于点,求的度数.通过学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形中,只要满足,则的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形中,,为上一点,为上一点,,连接、,、相交于点,如果,,求出菱形的边长.问题(3):通过以上的学习请写出你得到的启示(一条即可).24.(8分)如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标。(2)点在该二次函数图象上.①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.25.(10分)如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,求cosP的值.26.(10分)如图,△ABC中,AB=AC=10,BC=6,求sinB的值.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【详解】A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即与x轴交于点(,0),即C项错误;D.函数图象经过第二三四象限,不经过第一象限,即D项正确.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.2、B【解析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】a2•a4=a2+4=a1.故选:B.3、A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4、A【分析】由题意根据平行线分线段成比例定理写出相应的比例式,即可得出答案.【详解】解:∵DE∥BC,∴,,,∴A错误;故选:A.【点睛】本题考查平行线分线段成比例定理,熟练平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案.5、A【分析】根据反比例函数系数k的几何意义得到|a|=S矩形ADOE,|b|=S矩形BCOE,进而得到|b|+|a|=8,然后根据a<0,b>0可得答案.【详解】解:如图,∵AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面积为8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函数y=在第二象限,反比例函数y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故选:A.【点睛】本题考查了反比例函数y=(k≠0)的系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6、D【解析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题.【详解】翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,∵设x1,x2,x3均为正数,∴点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12,即10≤t≤12,故选D.【点睛】本题考查二次函数与x轴的交点,二次函数的性质,抛物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.7、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:由相似三角形的性质得:,即解得:(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.8、B【分析】过点C作CH∥AB交DE的延长线于点H,则DF=10-2-t=8-t,证明△DFG∽△HCG,可求出CH,再证明△ADE∽△CHE,由比例线段可求出t的值.【详解】解:过点C作CH∥AB交DE的延长线于点H,则BD=t,AE=2t,DF=10-2-t=8-t,

∵DF∥CH,

∴△DFG∽△HCG,∴,∴CH=2DF=16-2t,

同理△ADE∽△CHE,∴,∴,解得t=2,t=(舍去).故选:B.【点睛】本题主要考查相似三角形的判定与性质以及等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.9、C【分析】作CN⊥x轴于点N,根据证明,求得点C的坐标;设△ABC沿x轴的负方向平移c个单位,用c表示出和,根据两点都在反比例函数图象上,求出k的值,即可求出反比例函数的解析式.【详解】作CN⊥轴于点N,

∵A(2,0)、B(0,1).

∴AO=2,OB=1,∵,∴,

在和中,∴,∴,

又∵点C在第一象限,

∴C(3,2);设△ABC沿轴的负方向平移c个单位,

则,则,

又点和在该比例函数图象上,

把点和的坐标分别代入,得,

解得:,∴,

故选:C.【点睛】本题是反比例函数与几何的综合题,涉及的知识有:全等三角形的判定与性质,勾股定理,坐标与图形性质,利用待定系数法求函数解析式,平移的性质.10、C【分析】根据垂线的作法即可判断.【详解】观察作图过程可知:A.作法正确,不符合题意;B.作法正确,不符合题意;C.作法错误,符号题意;D.作法正确,不符合题意.故选:C.【点睛】本题考查了作图-复杂作图、垂线,解决本题的关键是掌握作垂线的方法.二、填空题(每小题3分,共24分)11、6【分析】根据正方形的性质可得OC∥AB,OB=,从而证出△COQ∽△PBQ,然后根据相似三角形的性质即可求出,从而求出的长.【详解】解:∵正方形的边长为8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案为:6.【点睛】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.12、【分析】首先证明△BOC是等边三角形及△OBC≌△AOD(SAS),进而得出S△AOD=S△DOC=S△BOC=S△AOB,得到S阴=2•S扇形OAD,再利用扇形的面积公式计算即可;【详解】解:∵AC是直径,

∴∠ABC=∠ADC=90°,

∵∠BAC=30°,AD=3,

∴AC=2AD=6,∠ACB=60°,∴OA=OC=3,

∵OC=OB=OA=OD,

∴△OBC与△AOD是等边三角形,

∴∠BOC=∠AOD=60°,∴△OBC≌△AOD(SAS)又∵O是AC,BD的中点,

∴S△AOD=S△DOC=S△BOC=S△AOB,

∴S阴=2•S扇形OAD=,故答案为:.【点睛】本题考查扇形的面积公式、解直角三角形、等边三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13、4【分析】从的半径为,的面积为,可得∠AOB=90°,故OP的最小值为OP⊥AB时,为3,最大值为P与A或B点重合时,为6,故,当长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.【详解】∵的半径为,的面积为∴∠AOB=90°又OA=OB=6∴AB=当OP⊥AB时,OP有最小值,此时OP=AB=当P与A或B点重合时,OP有最大值,为6,故当OP长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.故答案为:4【点睛】本题考查的是圆的对称性及最大值、最小值问题,根据“垂线段最短”确定OP的取值范围是关键.14、【分析】根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.15、【分析】根据侧面展开图,求出圆锥的底面半径和母线长,然后利用勾股定理求得圆锥的高.【详解】如下图,为圆锥的侧面展开图草图:∵侧面展开图是弧长为2π的半圆形∴2π=,其中表示圆锥的母线长解得:圆锥侧面展开图的弧长对应圆锥底面圆的周长∴2π=2πr,其中r表示圆锥底面圆半径解得:r=1∴根据勾股定理,h=故答案为:【点睛】本题考查圆锥侧面展开图,公式比较多,建议通过绘制侧面展开图的草图来分析得出公式.16、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.17、4(1+x)2=5.1【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x,根据“由2010年的年收入4万元增加到2012年年收入5.1万元”,即可得出方程.【详解】设每年的年增长率为x,根据题意得:4(1+x)2=5.1.故答案为4(1+x)2=5.1.【点睛】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).18、y=3(x﹣1)2﹣2【分析】根据图象向下平移减,向右平移减,即可得答案.【详解】抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2,故答案为y=3(x-1)2-2.【点睛】本题考查了二次函数图象与几何变换,解题的关键是用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.三、解答题(共66分)19、(1)515或565;(2)的值为4,8,96,108,144.【分析】(1)根据“对称数”的定义和可知,这个三位数首尾数字只能是5,然后中间的数字2倍后个位数为2,由此可得B的值.(2)首先表示出这两个三位数,,,根据能被11整数,分情况讨论、的值即可得出答案.【详解】解:(1)∵由运算法则可知,这个三位数首尾数字只能是5,中间数字2倍后各位数字为2,∴中间数字为1或6,则这个三位数为515或565故答案为:515或565;(2)由题意得:,,能被11整除,是11的倍数.、在1~9中取值,.当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;的值为4,8,96,108,144.【点睛】本题考查新型定义运算问题,理解的运算法则是解决本题的关键.20、(1)见解析(2)AF=2【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=180°∵∠AFE+∠AFD=,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形∴AD∥BCCD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴∴AF=21、(1)DE与⊙O相切,证明见解析;(2)CE长度为1【分析】(1)连接OD,如图,根据等腰三角形的性质和等量代换可得∠ODB=∠C,进而可得OD∥AC,于是可得OD⊥DE,进一步即可得出结论;(2)连接OF,由切线的性质和已知条件易得四边形ODEF为矩形,从而可得EF=OD=3,在Rt△AOF中根据勾股定理可求出AO的长,进而可得AB的长,即为AC的长,再利用线段的和差即可求出结果.【详解】解:(1)DE与⊙O相切;理由如下:连接OD,如图,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE与⊙O相切;(2)如图,连接OF;∵DE,AF是⊙O的切线,∴OF⊥AC,OD⊥DE,又∵DE⊥AC,∴四边形ODEF为矩形,∴EF=OD=3,在Rt△OFA中,∵AO2=OF2+AF2,∴,∴AC=AB=AO+BO=8,CE=AC﹣AF﹣EF=8﹣4﹣3=1.答:CE长度为1.【点睛】本题考查了圆的切线的判定和性质、矩形的判定和性质、等腰三角形的性质以及勾股定理等知识,属于常考题型,正确添加辅助线、熟练掌握上述知识是解题的关键.22、(1)①;②线段、、之间的数量关系为:,理由见解析;(2),,理由见解析.(3)理由见解析.【分析】(1)①证明△BAD≌△CAE(SAS),可得结论:∠ACE=∠B=60°;②由△BAD≌△CAE,得BD=CE,利用等边三角形的AC=BC=BD+DC等量代换可得结论;(2)如图2,先证明△ABD≌△ACE,得BD=CE,∠ACE=∠B=45°,同理可得结论;(3)如图3,作辅助线,构建如图2的两个等腰直角三角形,已经有一个△ABD,再证明△ACF也是等腰直角三角形,则利用(2)的结论求AC的长.【详解】(1)①∵和均为等边三角形,∴,,,∴,即,∴,∴,②线段、、之间的数量关系为:;理由是:由①得:,∴,∵,∴;(2),,理由是:如图2,∵和均为等腰直角三角形,且,∴,,,即,∴,∴,,∵,∴,∵在等腰直角三角形中,,∴;(3)如图3,过作的垂线,交的延长线于点,∵,,,∴,,∵,∴以BD的中点为圆心,为半径作圆,则A,C在此圆上,∴、、、四点共圆,∵恰好平分∴,∴是等腰直角三角形,由(2)得:,∴.【点睛】本题是四边形的综合题,考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的性质和判定、四点共圆的判定,圆周角定理,本题还运用了类比的思想,从问题发现到解决问题,第三问有难度,作辅助线,构建等腰直角三角形ACF是关键.23、(1);(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论