版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为()A.35° B.55° C.60° D.70°2.二次函数y=(x-1)2-5的最小值是()A.1 B.-1 C.5 D.-53.如图,已知抛物线与轴分别交于、两点,将抛物线向上平移得到,过点作轴交抛物线于点,如果由抛物线、、直线及轴所围成的阴影部分的面积为,则抛物线的函数表达式为()A. B.C. D.4.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.5.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=3896.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.不确定7.二次函数图像的顶点坐标是()A. B. C. D.8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55° B.70° C.125° D.145°9.下列一元二次方程中有两个不相等的实数根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=010.下列事件属于随机事件的是()A.旭日东升 B.刻舟求剑 C.拔苗助长 D.守株待兔二、填空题(每小题3分,共24分)11.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是_____.12.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.13.在中,,,则______________.14.如图,PA与⊙O相切于点A,AB是⊙O的直径,在⊙O上存在一点C满足PA=PC,连结PB、AC相交于点F,且∠APB=3∠BPC,则=_____.15.如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是___.16.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.17.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为__.18.如图,反比例函数y=(x>0)经过A,B两点,过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连接AD,已知AC=1,BE=1,S△ACD=,则S矩形BDOE=______.三、解答题(共66分)19.(10分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20.(6分)点为图形上任意一点,过点作直线垂足为,记的长度为.定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;(1)已知直线,平面内反比例函数在第一象限内的图象记作则.(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.21.(6分)解方程:5x(x+1)=2(x+1)22.(8分)如图,ΔABC中,D是AC的中点,E在AB上,BD、CE交于O点.已知:OB:OD=1:2,求值.23.(8分)已知如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),B(﹣1,0),与y轴交于点C,连接AC,点P是直线AC上方的抛物线上一动点(异于点A,C),过点P作PE⊥x轴,垂足为E,PE与AC相交于点D,连接AP.(1)求点C的坐标;(2)求抛物线的解析式;(3)①求直线AC的解析式;②是否存在点P,使得△PAD的面积等于△DAE的面积,若存在,求出点P的坐标,若不存在,请说明理由.24.(8分)如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.25.(10分)某商场将进价为元的台灯以元售出,平均每月能售出个,调查表明:这种台灯的售价每上涨元,其销售量就减少个.为了实现平均每月元的销售利润,这种台灯的售价应定为多少?这时应进台灯个?如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多个?26.(10分)已知正比例函数y=k1x(k1≠0)与反比例函数的图象交于A、B两点,点A的坐标为(2,1).(1)求正比例函数、反比例函数的表达式;(2)求点B的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】直接根据圆周角定理进行解答即可.【详解】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=110°,∴∠ACB=∠AOB=55°.故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、D【分析】根据顶点式解析式写出即可.【详解】二次函数y=(x-1)2-1的最小值是-1.故选D.【点睛】本题考查了二次函数的最值问题,比较简单.3、A【分析】利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形OABC的面积可求出AB的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线的函数表达式.【详解】当y=0时,有(x−2)2−2=0,解得:x1=0,x2=1,∴OA=1.∵S阴影=OA×AB=16,∴AB=1,∴抛物线的函数表达式为y=(x−2)2−2+1=故选A.【点睛】本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC的面积是解题的关键.4、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.5、B【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.6、A【分析】将方程化简,再根据判断方程的根的情况.【详解】解:原方程可化为,所以原方程有两个不相等的实数根.故选:A【点睛】本题考查了一元二次方程根的情况,灵活利用的正负进行判断是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个不相等的实数根;当时,方程没有实数根.7、D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵,∴二次函数的顶点坐标为.
故选:D.【点睛】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.8、C【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋转角等于125°.故选C.9、C【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】解:选项A:△=0,方程有两个相等的实数根;选项B、△=0-12=-12<0,方程没有实数根;选项C、△=4-4×1×(-17)=4+68=72>0,方程有两个不相等的实数根;选项D、△=1-4×5=-19<0,方程没有实数根.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac;当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、D【分析】根据事件发生的可能性大小,逐一判断选项,即可.【详解】A、旭日东升是必然事件;B、刻舟求剑是不可能事件;C、拔苗助长是不可能事件;D、守株待兔是随机事件;故选:D.【点睛】本题主要考查随机事件的概念,掌握随机事件的定义,是解题的关键.二、填空题(每小题3分,共24分)11、19.2m【分析】根据在同一时物体的高度和影长成正比,设出教学楼高度即可列方程解答.【详解】设教学楼高度为xm,列方程得:解得x=19.2,故教学楼的高度为19.2m.故答案为:19.2m.【点睛】本题考查了相似三角形的应用,解题时关键是找出相等的比例关系,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.12、1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB,即可证明△CDP∽△BPA,根据相似三角形的性质列方程求出x的值即可得答案.【详解】设BP=x,则PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的长为1或2,故答案为:1或2【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键.13、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.14、.【分析】连接OP,OC,证明△OAP≌△OCP,可得PC与⊙O相切于点C,证明BC=CP,设OM=x,则BC=CP=AP=2x,PM=y,证得△AMP∽△OAP,可得:,证明△PMF∽△BCF,由可得出答案.【详解】解:连接OP,OC.∵PA与⊙O相切于点A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC与⊙O相切于点C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直径,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=.设OM=x,则BC=CP=AP=2x,PM=y,∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴.∴AP2=PM•OP,∴(2x)2=y(y+x),解得:,(舍去).∵PM∥BC,∴△PMF∽△BCF,∴=.故答案为:.【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理.正确作出辅助线,熟练掌握相似三角形的判定与性质是解题的关键.15、20°.【分析】连接OA、OB,由弧长公式的可求得∠AOB,然后再根据同弧所对的圆周角等于圆心角的一半可得∠ACB.【详解】解:连接OA、OB,由弧长公式的可求得∠AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得∠ACB=20°.故答案为:20°【点睛】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.16、(9,0)【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).17、【解析】试题解析:如图:连接OA交BC于D,连接OC,是等边三角形,是外心,故答案为18、1【分析】根据三角形的面积求出CD,OC,进而确定点A的坐标,代入求出k的值,矩形BDOE的面积就是|k|,得出答案.【详解】∵AC=1,S△ACD=,∴CD=3,∵ODBE是矩形,BE=1,∴OD=1,OC=OD+CD=1,∴A(1,1)代入反比例函数关系式得,k=1,∴S矩形BDOE=|k|=1,故答案为:1.【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质以及三角形的面积公式是解题的关键.三、解答题(共66分)19、(1)答案见解析;(2)【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(1);(2)或;(3)或【分析】(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ平分∠AOB,再利用直线表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点作直线,可判断出上的点到直线的最大距离为,然后根据最大距离的范围求出TH的范围,从而得到FT的范围,根据范围建立不等式组求解即可;(3)把点P坐标带入表达式,化简得到关于a、b的等式,从而推出直线的表达式,根据点E的坐标可确定点E所在直线表达式,再根据最小距离为0,推出直线一定与图形K相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,∵直线:与H相交于点P,∴,即,只有一个解,∴,解得,∴,联立,解得,即,∴,且点P在第一、三象限夹角的角平分线上,即PQ平分∠AOB,∴为等腰直角三角形,且OP=2,∵直线:,∴当时,,当时,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即为H上的点到直线的最小距离,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,则OQ=,∴,即;(2)由题过点作直线,则上的点到直线的最大距离为,∵,即,∴,由题,则,∴,又∵,∴,解得或;(3)∵直线恒过定点,∴把点P代入得:,整理得:,∴,化简得,∴,又∵点恒在直线上,∴直线的表达式为:,∵,∴直线一定与以点为顶点,原点为对角线交点的正方形图形相交,∵,∴点E一定在直线上运动,情形一:如图,当点E运动到所对顶点F在直线上时,由题可知E、F关于原点对称,∵,∴,把点F代入得:,解得:,∵当点E沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向下运动,即;情形二:如图,当点E运动到直线上时,把点E代入得:,解得:,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即,综上所述,或.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.21、x=﹣1或x=0.1【分析】先移项,再利用因式分解法求解可得.【详解】解:∵5x(x+1)﹣2(x+1)=0,∴(x+1)(5x﹣2)=0,则x+1=0或5x﹣2=0,解得x=﹣1或x=0.1.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.22、1∶4【分析】取AE中点F,连DF,利用平行线分线段成比例定理,再等量代换即可求得答案.【详解】取AE中点F,连DF,如图,∵D是AC中点,∴DF∥CE,∵OB∶OD=1∶2,∴BE∶EF=1∶2,∴BE∶AE=1∶4.【点睛】本题考查了平行线分线段成比例定理,见中点一般构造中位线利用平行线分线段成比例定理求解.23、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【分析】(1)将代入二次函数解析式即可得点C的坐标;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出抛物线的解析式;(3)①设直线直线AC的解析式为,把A(3,0),C代入即可得直线AC的解析式;②存在点P,使得△PAD的面积等于△DAE的面积;设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,根据S△PAD=S△DAE时,即可得PD=DE,即可得出结论.【详解】解:(1)由y=ax2+bx+3,令∴点C的坐标为(0,3);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3得,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(3)①设直线直线AC的解析式为,把A(3,0),C代入得,解得,∴直线AC的解析式为;②存在点P,使得△PAD的面积等于△DAE的面积,理由如下:设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),∴PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,当S△PAD=S△DAE时,有,得PD=DE,∴﹣x2+3x=﹣x+3解得x1=1,x2=3(舍去),∴y=﹣x2+2x+3=﹣12+2+3=4,∴当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【点睛】本题考查了用待定系数法求解析式,二次函数的综合,掌握知识点是解题关键.24、(1);(2);(3).【分析】将A,B,C点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 油气管道铺设爆破作业合同
- 建筑施工索赔管理合同
- 物流园区群综合楼租赁合同
- 财务会计人员聘用合同
- 木工包工协议书模版
- 橄榄球场景扩建围挡施工协议
- 河南省商丘市(2024年-2025年小学五年级语文)人教版阶段练习(下学期)试卷及答案
- 【初中道法】敬畏生命+课件-2024-2025学年统编版道德与法治七年级上册
- 像女友认错的检讨书范文(9篇)
- 清明祭祀发言稿
- 幼儿园绘本故事:《老虎拔牙》 课件
- 2021年上半年《系统集成项目管理工程师》真题
- 一个冬天的童话 遇罗锦
- GB/T 706-2008热轧型钢
- 实验六 双子叶植物茎的初生结构和单子叶植物茎的结构
- GB/T 25032-2010生活垃圾焚烧炉渣集料
- GB/T 13610-2020天然气的组成分析气相色谱法
- 《彩虹》教案 省赛一等奖
- 2023年湖南建筑工程初中级职称考试基础知识
- 沈阳机场航站楼扩建工程安装施工组织设计
- 司法考试:证据法
评论
0/150
提交评论