电力系统潮流计算方法分析_第1页
电力系统潮流计算方法分析_第2页
电力系统潮流计算方法分析_第3页
电力系统潮流计算方法分析_第4页
电力系统潮流计算方法分析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.电力系统潮流分析:***:***.

&&11.1

.潮流算法简常潮计常规的潮流计算是在确定的状态下。即:通过已知运行条件(比如节点功率或网络结构等得到系统的运行状(比如所有节点的电压值与相角有支路上的功率分布和损耗等常规潮流算法中的一种普遍采用的方法是牛顿拉夫逊法初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛。下面简要介绍该方法。1.1.1牛顿拉夫逊方法原理对于非线性代数方程组式(1-1待求量x初次的估计x

(0)

附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式1-2)的线性化变换后的方程组,该方程组被称为修正方程组。f

'

x)是f(x对于x的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J。(1-1)fx,,x)0i1,2,Li2(1-2)f(x(0)f(x(0)(0)由修正方程式可求出经过第一次迭代之后的修正量(0),并用修正量(0)与估计值x(0)之和,表示修正后的估计值

(1)

,表示如下('()]f((0)

(1-3)x(1)x

(0)

(1-4)重复上述步骤。第次的迭代公式为:f

'

x

(k)

(k)

(x

()

(1-5)x

(k

x

()

()

(1-6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:VjfiiiGjBijijij

(1-7)假设系统的网络中一共设有n个节点,平衡节点的电压是已知的,平衡节点表示如。jfn

n

(1-8)除了平衡节点以外的所2(n个节点是需要求解的量。每个节点可列出两个方程式。假定系统中前个节点为P-Q节点,n个节点为P-V节点于节点Pii.

Qfffiij.Qfffiij的值是固定的,对于节点,的值是固定的。iiGBf)ffiiijjijjjijjjB)ijjijjijjj

jj

B)0ijjBe)ijj

i

(1-9)Giiijjjefiii

ij

f

j

f

i

j

ij

f

j

B

ij

e

j

im

()选定电压初始值,按泰勒级数展开,忽二次方程及以后各项得到修正方程如下ii

()其中1

1

L

m

m

m

2m

L

n

2n

T

,1

m

n

n

,11M

M

LLL

mmM

mmM

M

M

LLL

M

MmmJm1m1M

mLmLLLML

mmmmmmmM

mmmmmmmM

mmmM

mLmLLLML

mmmM

mmmM

LL

mm

mm

LL

雅克比矩阵J各元素的计算公式如下:.

ijiijiiijiijiiijjijjiiiiiiijjijjiiiiii2ijiijiiijiijiiijjijjiiiiiiijjijjiiiiii2iijijijiijijiief)jjiBefjjjj

j

.()niGf)fijjijjiiiiiijn(fBe)fijjijjiiiiiiijji(fBe)fijniGf)efjjij

j

()

i

i

2

f

i一般雅克比矩阵表示为:

HijNijMij

Gef)ijiiji(Gef)fijjijjiiiiiij(Bf)ijiijife)efijjijjiiiiiij(Bf)ijiijiGf)fijjijjiiiiiij

(j(j)(j)(j)(j)(j)

j

Lij

ij

Gef)ijiijief)eBfijjijjiiiiiij

(j)(j)

i

0(j)R(j)ji0(j)Sif(j)ji

()牛顿拉夫逊方法求解框图如下:.

.启动输入原始数据形成导纳矩阵给定电压初值、置

对于PQ点,按(计算

对于PU节,按式)算

是否

按),(3-13)雅克比矩阵J中数

按系统的潮流分布计算求解修正方程式,得到

节点电压、支路功率和网损以

通过

e

,f

更新各节点的电压

输出以

e

f

图1.1

牛顿拉夫逊潮流计算法求解框图1.1.2保留非线性法求解过程与牛顿法的不同之处在于一是假设雅克比矩阵在迭代过程中不变取初.

U形

.成的雅克比矩阵来迭代;第二是计算出来的修正量一直是初始值的修正量。由于保留非线性只对直角坐标形式的公式不存在截断误差,因此为了减小计算误差,本文以直角坐标形式的牛拉法为基础编写了保留非线性潮流计算方法的程序。迭代公式为:∆(k+1)=-J

-1

[(x(0))-

s+y(∆x)](1-14)迭代过程和牛拉法相类似,流程图如下所示:J

(0)

(())求解

(

maxi

(ki

(ki

?

xk输出结果图1.2

保留非线性法求解框图1.2

蒙卡模法1.2.1蒙特卡罗模拟原理蒙特卡罗模拟方法的思想是,是当求解问题是一不确定事件的平均值时,我们通过构建模型并采用某特定的“实验可以实验中此事件发生的频率去估算概率。.

MMMMl2M1.2.2蒙特卡罗模拟步骤1)根据不新能源的特点建立新能源输出功率的样本,规模为N;2)将得到个样本值带入对应接入新能源的各节点,得到接入光伏后的各节点的值。3)按1.1所述的牛顿拉夫逊法进行确定性潮流计算,得N关于节点的电压,支路功率与网损的数据等。4)运用数上的统计原理,可以求出输出变量的分布情况。1.3

拉超方样1.3.1拉丁超立方采样原理拉丁超立方采样由D.McKayR.J.Beckman和在1979提出,它通过分层采样使采样点能够覆盖到整个随机变量的分布范围。该方法分成两步1)采样:有的输入变量可以通过分层采样,使得样本点更加准确均匀的分布;2)排列:变初次采样得到的样本数据的顺序,令变量数据之间的关联程度最小,或者通过排序达到指定的相关系数。1.3.2拉丁超立方采样优点1可以使采样得到的数据较为全面地覆盖变量所分布的范围,同时分层使得采样时不会再采到一样或相似的数据,更准确地体现变量的总体情况,同时减小了样本规模。一些文献证明了拉丁超立方采样与简单随机采样在采样规模同是M两种方法抽取到的变量假设是独立的,那么它们的联合覆盖空间百分比平均值表示如下:m

100%100%

()可以看出,M大于等于2一式大于二式明拉丁超立方采样比随机采样覆盖的范围大。比如当M=20,按式()计算得:P90.25%81.86%lm拉丁超立方采样的稳健性好。假设一输出随机变量满足下式:ncii

i

()c是常数,是输入随机变量X的线性函数。在相同采样规模下,进行一定次数的蒙特ii卡罗模拟,每一次都能获得一个关于Y的分布情况。由每个Y的分布的期望值可以得到一个.

.新的分布。用方表示这个分布的离散程度。若越大,表明不同仿真间的差异越大,算法的稳健性越不好文献指出通过拉丁超立方采样法得到的方要比随机采样得到的方差小1N明一共进行总数的随机采样得到的方与只需进行N次拉丁超立方采样得到的方相同。1.3.3拉丁超立方采样步骤1)采样假设X,L,X是随机潮流计算的N个输入变量的累积概率分布是:1Z(),kk取采样规模为A,采样步骤为:

()11Z的取值范围[匀分为A份,[],[],

L,[

;b.从所有区间内依次抽取一个值作为一个采样值,区间内的抽取是随机的;c.由累积概率分Z的反函数变换后,便能得到输入变量的样本数据。k第a区间Z的采样值和的第n采样值如下:

aranda1,2,L,

(1-19)x

(

)F

(

arand

),LN

(1-20).

XXZ1

k…A…

1A0

X

k图1.3

拉丁超立方采样法示意图总共有N输入变量,每个随机变量采样规模为,假设将随机变量的数据以行为单位依次排列,那么最终可以得到N*A阶的样本矩阵2)排序在求解随机潮流时,往往假设输入随机变量是独立的,但是按照上述方法得到的样本矩阵具有一定的相关性。我们需要分析和处理样本矩阵的关联性。使得变量数据值之间的关联性最小或者通过排序达到指定的相关系数。2

系统模型建光伏接入后的配电网系统主要由光伏发电系统、负荷和发电机三部分组成。太阳能光伏发电利用光伏电池可将光照转变为电动势的原理。在研究光伏并网后的随机潮流计算等有关问题时,首先要确定的是光伏发电的输出功率的随机特性,而此出力与太阳的光照强度密切相关,所以要想得到出力情况,必须先求出光照强度的随机分布本次光伏发电,采用的是典型的Beta分布。此时我们可以得到光照强度的概率密度函数为:f()

Smax

S

Smax

(2-1).

其中S是指光照强度统计时间内的实际值

是指最大值。Gamma函数。和是形状参数,将一段时间里太阳光照强度的期望和方参数[

进行下式的变换便能得到形状

(2-2)

(2-3)为

n

假设光伏发电所用的电池方阵中有个电池组每个电池组的面积为光电转换效率nn。那么电池方阵总体的光电之间转化效率和方阵总的面积分别是:

AnA

(2-4)Ann此时这个电池方阵总的输出功率为:N

(2-5)(2-6)通过(2-4)-(2-6光照强度的概率密度函数基础上,便能推导出光伏输出功率的概率密度函数为:f()

Pmax

max

(2-7)其中

,为光伏出力的最大值。

,光照强度的概率分布曲线为:.

.概率密度函数图

形状参数为0.8和时光照强度的概率分布图配电网中可以将接入光伏的节点视为PQ节点,主要由于通过调节电容器可以使得功率因数恒定。3IEEE-30点算3.1点统绍点系统包括台发电机个节点与41支路取系统的主要接线图如下:.

.

59

20

图3.1节点系统接线图

3.2

在计算时,为了简化计算对节点进行了重新编号。两常潮算比分别采用牛顿拉夫逊法和保留非线性法对节点进行潮流计算,选取精度为-8。牛拉法的迭代次数为6间为保留非线性的迭代次数为12为s。保留非线性的迭代次数多但是总的计算速度快。牛拉法则是相反。以30个节点的电压为例,误差表示两值之差,计算的结果如表所示。表3.1

两种常规潮流算法对比/标幺

.

.

0

0

0

0在相同节点接入了相同的光伏发电,样本规模为500,采用蒙特卡罗模拟法得到节点电压的与CDF如图和3.2所示。可以看出两种算法还是存在差异的。FP

U(a)保留非线性

.

.FP

U(b)牛顿拉夫逊

图3.2

两种算法下电压1图FC

10U(a)保留非线性

.

.FC

U(b)牛顿拉夫逊

图3.3

两种算法下电压1CDF图3.3

两随潮算的较将以简单随机采样为基础的蒙特卡罗模拟法MCSRS)和以拉丁超立方采样为基础的模拟法(MCLHS得出的数据从准确性和性能等方面做一个评估,全面比较两种随机潮流算法。3.3.1模型的准确性评估通过对输入随机变量的概率分布参数拟合,来分析所建立的模型的有效性和正确性。拟合的效果用相对误差指标来表示,表明分布情况的参数的相对误差指标计算公式如下:E

cxfc

100%

(3-1)

c分别为参数x的样本拟合值和给定值。对光伏的输出功率采用分布模型进行评估。Beta分布的两个形状参数的选取值为:0.9,

。在一定规模下,根据光伏采样样本得到样本的平均值和方差,得到形状参拟合值。并根据式(3-1)与实际的给定值0.9、0.85相比较得到误差。不同规模下分别采样次后将平均值作为最终的相对误差指标来评估分布模型的准确性以减小随机性对结果产生的影响。表3.2

光伏形状参数相对误差指标对比表.

xf.xfMCSRS

MCLHS采样规模

α

β

α

β由表可以看出,相同规模下比的误差更,生成的样本准确性更高。随着规模的增加,MCLHS和生成的样本数据的正确性都有很大的提高。3.3.2性能评估通过算出的输出变量的平均值与标准差去评估MCLHS与MCSRS两种方法的计算精确度。计算公式如下:

xf

(3-2)

(3-3)上面两个式子式分别用来表示平均值与标准差的相对误差指标。采样规模为N时,类输出变量便有N个数值出变量相对误差指标用这值的期望值表示分为std、和min四类减小随机性对结果产生的影响两种方法在不同规模下分别采样50,最后输出变量误差指标用50次误差的平均值表示,将50次误差计算的标准差最大值max与最小值min来评估上述方法收敛性与稳健性是误差计算的参考xb值。分别选取用次蒙特卡罗模拟得到的所选取的电压、功率和网损值来作为参考值。本次算例以节点电压值、支路编号为()的功率值与网损值作为研究对象。1)选取采规模为,以节点18电压值,支路3的功率值与网损值为研究对象,将得到的平均值和标准差与参考值比较得到误差两种方法均在此规模下进行50次仿真得到50计算结果的平均值、标准差、最大值和最小值(单位仿真

表3.3

两种方法在采样规模为时的误差比较表电压平均电压标准差方法MCLHS

平均值

标准差

最大值

最小值

平均值

标准差

最大值

最小值.

.MCSRS

0.03190.00087.87095.076418.46160.1886仿真

功率平均

功率标准差方法MCLHSMCSRS

平均值

标准差

最大值

最小值

平均值14.7843

标准差

最大值33.5485

最小值仿真

网损平均

网损标准差方法

平均值

标准差

最大值

最小值

平均值

标准差

最大值

最小值MCLHSMCSRS0.5360

16.2117

34.9615

以M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论