版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的应用(一)题型1一次函数模型1.一辆匀速行驶的汽车90min行驶的路程为180km,则这辆汽车行驶的路程y(km)与时间t(h)之间的函数解析式为(D)A.y=2t B.y=120tC.y=2t(t≥0) D.y=120t(t≥0)解析:因为90min=h,所以汽车的速度为180÷=120(km/h),则路程y(km)与时间t(h)之间的函数解析式为y=120t(t≥0).2.某厂日产拖把总成本y(元)与拖把日产量x(把)的函数解析式为y=5x+4000,而拖把出厂价格为每把10元,该厂为了不亏本,日产拖把至少为(D)A.200把 B.400把C.600把 D.800把解析:由5x+4000≤10x,解得x≥800,即日产拖把至少800把才不亏本.3.列车从A地出发直达500km外的B地,途中要经过离A地300km的C地,假设列车匀速前进,5h后从A地到达B地,则列车与C地距离y(单位:km)与行驶时间t(单位:h)的函数图象为(C)解析:因为列车匀速前进,所以列车行驶速度v=eq\f(500,5)=100(km/h),所以列车eq\f(300,100)=3(h)后到达C地,此时距离C地0km,即函数图象经过点(3,0),由此可排除A,B,D,知C正确.题型2幂函数与二次函数模型4.某商场以每件30元的价格购进一种商品,试销售中发现,这种商品每天的销量m(件)与每件的售价x(元)满足一次函数:m=162-3x.若要每天获得最大的销售利润,每件商品的售价应定为(B)A.30元 B.42元C.54元 D.越高越好解析:设每天的销售利润为y元,则y=(x-30)(162-3x),30≤x≤54,将上式配方后得y=-3(x-42)2+432,当x=42时,y取得最大值.故每件商品的售价定为42元时,每天才能获得最大的销售利润.5.为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最多不超过300吨,月处理成本y(元)与月处理量x(吨)之间的函数解析式可近似的表示为:y=x2-200x+40000,且每处理一吨二氧化碳得到可利用的化工产品价值为300元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?解:(1)由题意可知,二氧化碳的每吨平均处理成本为eq\f(y,x)=x+eq\f(40000,x)-200,x∈(0,300].因为x+eq\f(40000,x)-200≥2eq\r(x·\f(40000,x))-200=200,当且仅当x=eq\f(40000,x),即x=200时,才能使每吨的平均处理成本最低.(2)设该单位每月获利为S(元),则S=300x-y=300x-(x2-200x+40000)=-x2+500x-40000≥0,解得100≤x≤400,由题意可知0<x≤300,所以当100≤x≤300时,该单位每月不亏损.题型3分段函数模型6.某客运公司确定客票价格的方法是:如果行程不超过100公里,票价是每公里元,如果超过100公里,超过部分按每公里元定价,则客运票价y(元)与行程公里数x(公里)之间的函数解析式是y=eq\b\lc\{\rc\(\a\vs4\al\co1,0≤x≤100,,10+,x>100)).解析:由题意得y=eq\b\lc\{\rc\(\a\vs4\al\co1,0≤x≤100,,×100+x-100,x>100,))即y=eq\b\lc\{\rc\(\a\vs4\al\co1,0≤x≤100,,+10,x>100.))7.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.可以享受折扣优惠金额折扣优惠率不超过500元的部分5%超过500元的部分10%某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__1_120__元.解析:设折扣金额为y元,购物总金额为x元,由题意得y=eq\b\lc\{\rc\(\a\vs4\al\co1(0,0<x≤600,,x-600,600<x≤1100,,x-1100+25,x>1100.))因为y=30>25,所以x>1100,所以(x-1100)+25=30,解得x=1150,1150-30=1120(元),故此人购物实际所付金额为1120元.易错点读不懂图象信息致错8.水池有两个相同的进水口和一个出水口,每个口进出水速度如图甲、乙所示,某天0点到6点该水池蓄水量如图丙所示,给出以下3个论断:甲乙丙①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到5点不进水也不出水.则一定正确的论断是(A)A.① B.①②C.①③ D.①②③解析:由甲,乙图得进水速度1,出水速度2,①0点到3点时斜率为2,蓄水量增加速度是2,只进水不出水,故①对;②不进水只出水时,蓄水量减少速度应为2,②错;③两个进水一个出水时,蓄水量减少速度也是0,故③错.故选A.[误区警示]正确理解每一个函数图象,数形结合是解决此题的关键,本题容易错选C.对于③中,当两个进水一个出水时也符合,这是个动态中的零增量.(限时30分钟)一、选择题1.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如下图所示,由图中给出的信息可知,营销人员没有销售量时的收入是(B)A.3100元 B.3000元C.2900元 D.2800元解析:设函数解析式为y=kx+b(k≠0),函数图象过点(1,8000),(2,13000),则eq\b\lc\{\rc\(\a\vs4\al\co1(k+b=8000,,2k+b=13000,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(k=5000,,b=3000,))所以y=5000x+3000,x≥0.当x=0时,y=3000.所以营销人员没有销售量时的收入是3000元.2.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为v甲和v乙(如图所示),那么对于图中给定的t0和t1,下列判断中一定正确的是(D)A.在t1时刻,两车的位置相同B.t1时刻后,甲车在乙车后面C.在t0时刻,两车的位置相同D.在t0时刻,甲车在乙车前面解析:由图象可知,在t0时刻前,甲车的速度高于乙车的速度,由路程s=vt可知,甲车走的路程多于乙车走的路程,所以在t0时刻,甲车在乙车前面.3.某城市对一种售价为每件160元的电子产品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为eq\b\lc\(\rc\)(\a\vs4\al\co1(30-\f(5,2)R))万件,要使附加税不少于128万元,则R的取值范围是(A)A.[4,8] B.[6,10]C.[4%,8%] D.[6%,10%]解析:根据题意,要使附加税不少于128万元,需eq\b\lc\(\rc\)(\a\vs4\al\co1(30-\f(5,2)R))×160×R%≥128,整理得R2-12R+32≤0,解得4≤R≤8,因此,实数R的取值范围是[4,8].4.一个体户有一批货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为%.如果月末售出,可获利120元,但要付保管费5元.这位个体户为获利最大,则这批货(D)A.月初售出好B.月末售出好C.月初或月末售出一样D.由成本费的大小确定解析:设这批货物成本费为x元,若月初售出时,到月末共获利为y1=100+(x+100)×%;若月末售出时,可获利为y2=120-5=115(元).则y1-y2=100+(x+100)×%-115=%×(x-525),所以当成本费大于525元时,月初售出好;当成本费小于525元时,月末售出好;当成本费等于525元时,月初或月末售出均可.故选D.5.某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在图中的两条线段上;该股票在30天内的日交易量Q(万股)与时间t(天)的部分数据如下表所示,且Q与t满足一次函数关系.第t天4101622Q(万股)36302418那么在这30天中第几天日交易额最大(B)A.10 B.15C.20 D.25解析:当0≤t<20时,设P=at+b,根据图象知过点(0,2),(20,6),所以eq\b\lc\{\rc\(\a\vs4\al\co1(b=2,,6=20a+b,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(b=2,,a=\f(1,5),))所以P=eq\f(1,5)t+2.同理可得当20≤t≤30时,P=-eq\f(1,10)t+8.综上可得,P=eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,5)t+2,0≤t<20,,-\f(1,10)t+8,20≤t≤30.))由题意可设Q=kt+m,把(4,36),(10,30)代入可得k=-1,m=40,所以Q=-t+40.y=P·Q=eq\b\lc\{\rc\(\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,5)t+2))-t+40,0≤t<20,,\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,10)t+8))-t+40,20≤t≤30,))当0≤t<20时,t=15时,ymax=125万元,当20≤t≤30时,t=20时,ymax=120万元.综上可得,第15天日交易额最大.二、填空题6.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超出800元部分的14%纳税;超过4000元的按全稿酬的%纳税.某人出版了一本书共纳税420元,则这个人的稿费为__3_800__元.解析:若这个人的稿费为4000元时,应纳税(4000-800)×14%=448(元).又因为420<448,所以此人的稿费应在800到4000之间,设为x,所以(x-800)×14%=420,解得x=3800(元).7.某产品的总成本C与年产量Q之间的关系为C=aQ2+3000,其中a为常数,且当年产量为200时,总成本为15000.记该产品的平均成本为f(Q)eq\b\lc\(\rc\)(\a\vs4\al\co1(平均成本=\f(总成本,年产量))),则当Q=__100__,f(Q)取得最小值,这个最小值为__60__.解析:由题意得15000=40000a+3000,解得a=eq\f(3,10),所以C=eq\f(3,10)Q2+3000,则f(Q)=eq\f(C,Q)=eq\f(3Q,10)+eq\f(3000,Q)≥2eq\r(\f(3Q,10)×\f(3000,Q))=60,当且仅当eq\f(3Q,10)=eq\f(3000,Q),即Q=100时,f(Q)取得最小值,最小值为60.三、解答题8.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3eq\r(2a)-6,乙城市收益Q与投入b(单位:万元)满足Q=eq\f(1,4)b+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?解:(1)当甲城市投资50万元,即x=50时,乙城市投资120-50=70(万元),所以总收益f(50)=3eq\r(2×50)-6+eq\f(1,4)×70+2=(万元).(2)由题知,设甲城市投资x万元,则乙城市投资(120-x)万元,所以f(x)=3eq\r(2x)-6+eq\f(1,4)(120-x)+2=-eq\f(1,4)x+3eq\r(2x)+26,依题意得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年预售新房买卖合同(含社区配套服务)3篇
- 2024年环境监测设备生产与质量保证合同
- 2024年适用借款担保协议格式无偿下载件版B版
- 2022年中考化学单元复习【知识清单·必做题】第三单元 物质构成的奥秘(解析版)
- 2024年高效节能取暖设施升级改造采购合同一
- 劳务派遣责任追究协议书
- 2024版房产中介服务合同版B版
- 2024年邮政包裹运输服务合同3篇
- 2025年度绿色节能办公楼租赁合同范本3篇
- 2025版高端医疗责任保险合同协议3篇
- DB21-T 3874-2023 海水鱼工厂化循环水养殖池设计规范
- 2024年中国电信运营商服务合同
- 2025届山东省即墨一中物理高三第一学期期末综合测试试题含解析
- 健身房的考勤管理制度
- 无人机使用安全协议书范文范本
- 中国汽车行业分析与展望:适者生存-2024-10-市场解读
- 专题05 阅读-2023-2024学年六年级英语寒假专项提升(人教PEP版)
- 做账实操-期货公司的账务处理示例
- 双方共用消防通道协议书
- 绿化租摆服务投标方案(技术标)
- 整本书阅读《乡土中国》议题思辨:无讼之“讼”教学设计 中职语文高教版基础模块下册
评论
0/150
提交评论