版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B.C. D.2.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+53.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.4.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=()A.80° B.100° C.110° D.120°5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A. B. C. D.6.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是()A. B.C. D.7.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为()A.4 B.2 C.4 D.28.如图,在△ABC中,点D在BC上一点,下列条件中,能使△ABC与△DAC相似的是()
A.∠BAD=∠C B.∠BAC=∠BDA C.AB2=BD∙BC D.AC2=CD∙CB9.先将抛物线关于轴作轴对称变换,所得的新抛物线的解析式为()A. B. C. D.10.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交 B.相切 C.相离 D.无法确定二、填空题(每小题3分,共24分)11.如图,是⊙的直径,是⊙上一点,的平分线交⊙于,且,则的长为_________.12.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.13.已知扇形的圆心角为120°,弧长为4π,则扇形的面积是___.14.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是_____.15.如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积(单位:与工作时间(单位:)之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是____________.16.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.17.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则=____________.18.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.三、解答题(共66分)19.(10分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣120.(6分)如图,于,以直径作,交于点恰有,连接.(1)如图1,求证:;(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;(3)在(2)的基础上,若,求的长.21.(6分)解一元二次方程:.22.(8分)根据要求画出下列立体图形的视图.23.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙10101098(1)根据表格中的数据,可计算出甲的平均成绩是环(直接写出结果);(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:)24.(8分)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.25.(10分)如图,,平分,且交于点,平分,且交于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.26.(10分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式,从而得到y与x之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x,BE=y﹣1,∵AD//BC,∴△EFB∽△EDC,∴,即,∴y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.2、A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.3、B【解析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【详解】解:A:,化简后是:,不符合一元二次方程的定义,所以不是一元二次方程;
B:x2=0,是一元二次方程;
C:x2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;
D:,分母含有未知数,是一元一次方程,所以不是一元二次方程;
故选:B.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.4、C【分析】直接利用圆内接四边形的性质分析得出答案.【详解】∵四边形ABCD内接于⊙O,E为CD延长线上一点,∠ADE=110°,∴∠B=∠ADE=110°.故选:C.【点睛】本题考查圆内接四边形的性质.熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.5、A【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率==.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.6、B【分析】观察二次函数图象,找出>0,>0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:
抛物线的顶点坐标在第四象限,即,
∴,.
∵反比例函数中,
∴反比例函数图象在第一、三象限;
∵一次函数,,
∴一次函数的图象过第一、二、三象限.
故选:B.【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出,.解决该题型题目时,熟记各函数图象的性质是解题的关键.7、D【分析】连接OA、OB,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB=90°,再根据等腰直角三角形的性质即可求出AB的长.【详解】连接OA、OB,如图,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB为等腰直角三角形,∴AB=OA=2.故选:D.【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.8、D【解析】根据相似三角形的判定即可.【详解】△ABC与△DAC有一个公共角,即∠ACB=∠DCA,要使△ABC与△DAC相似,则还需一组角对应相等,或这组相等角的两边对应成比例即可,观察四个选项可知,选项D中的AC即ACCD=CBAC,正好是故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题关键.9、C【分析】根据平面直角坐标系中,二次函数关于轴对称的特点得出答案.【详解】根据二次函数关于轴对称的特点:两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,可得:抛物线关于轴对称的新抛物线的解析式为故选:C.【点睛】本题主要考查二次函数关于轴对称的特点,熟知两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,对称轴不变是关键.10、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.二、填空题(每小题3分,共24分)11、【分析】连接OD,由AB是直径,得∠ACB=90°,由角平分线的性质和圆周角定理,得到△AOD是等腰直角三角形,根据勾股定理,即可求出AD的长度.【详解】解:连接OD,如图,∵是⊙的直径,∴∠ACB=90°,AO=DO=,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∴△AOD是等腰直角三角形,∴;故答案为:.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,勾股定理,以及等腰直角三角形的性质,解题的关键是掌握圆周角定理进行解题.12、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【详解】如图,连接BF,
∵EF是AB的垂直平分线,
∴AF=BF,
∴,,在△BCF中,∴,∴.故答案为:.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.13、12π.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【详解】设扇形的半径为r.则=4π,解得r=6,∴扇形的面积==12π,故答案为12π.【点睛】本题考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=,扇形的面积公式S=,解题的关键是熟记这两个公式.14、21π.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、【分析】利用待定系数法求出提高效率后与的函数解析式,由此可得时,的值,然后即可得出答案.【详解】由题意,可设提高效率后得与的函数解析式为将和代入得解得因此,与的函数解析式为当时,则该公司提高工作效率前每小时完成的绿化面积故答案为:100.【点睛】本题考查了一次函数的实际应用,依据图象,利用待定系数法求出函数解析式是解题关键.16、22015π【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知为圆的周长,再找出圆半径的规律即可解题.【详解】解:连接P1O1,P2O2,P3O3…,∵P1是⊙O1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,PnOn垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案为:22015π.【点睛】本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.17、【解析】∵点P的坐标为(3,4),∴OP=,∴.故答案为:.18、1【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=,即可得出答案.【详解】解:∵正多边形的每一个外角都等于1°,∴正多边形的边数为:,∴这个正多边形的中心角为:.故答案为:1.【点睛】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质并根据题意求出正多边形的边数是解决问题的关键.三、解答题(共66分)19、1+【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×-1+-1+2=1+.点睛:此题主要考查了实数运算,正确化简各数是解题关键.20、(1)证明见解析;(2);理由见解析;(3).【分析】(1)由直径所对圆周角等于90度可得,进而易证,再根据即可证明;(2)由,可得,进而可知,再由同弧所对圆周角相等可得,再分别证明,,从而可得,即可解决问题;(3)设,,由,可得,可得,由,可得,设,,根据,可得,求出即可解决问题.【详解】解:(1)证明:是直径,,∵,,,,,又∵,(AAS).(2)结论:.理由如下:由(1)可得:,,,是直径,∴,,,又∵,∴,∴,,,,,.(3)解:设,,,,整理得,或(舍弃),,,又∵由(2)可知,,,∵,∴,∴,设,,,,,【点睛】本题综合考查了圆与相似,涉及了圆的性质、切线的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.21、,.【分析】根据因式分解法即可求解.【详解】解:∴x-1=0或2x-1=0解得,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.22、答案见解析.【分析】根据主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,即可得到结果.【详解】解:如图所示:【点睛】本题考查几何体的三视图,作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.23、(1)9;(2)7;(3),,选甲,理由见解析.【分析】(1)根据图表中的甲每次数据和平均数的计算公式列式计算即可;
(2)根据图表中的乙每次数据和平均数的计算公式列式计算即可;(3)分别从平均数和方差进行分析,即可得出答案.【详解】(1)甲的平均成绩是:;(2)设第二次的成绩为,则乙的平均成绩是:,解得:;(3),,推荐甲参加全国比赛更合适,理由如下:
两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点睛】此题主要考查了平均数的求法、方差的求法以及运用方差做决策,正确的记忆方差公式是解决问题的关键,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.24、(1)∠BDC=α;(2)∠ACE=β;(3)DE=.【分析】(1)连接AD,设∠BDC=γ,∠CAD=β,则∠CAB=∠BDC=γ,证明∠DAB=β−γ,β=90°−γ,∠ABD=2γ,得出∠ABD=2∠BDC,即可得出结果;(2)连接BC,由直角三角形内角和证明∠ACE=∠ABC,由点C为弧ABD中点,得出∠ADC=∠CAD=∠ABC=β,即可得出结果;(3)连接OC,证明∠COB=∠ABD,得出△OCH∽△ABD,则==,求出BD=2OH=10,由勾股定理得出AB==26,则AO=13,AH=AO+OH=18,证明△AHE∽△ADB,得出=,求出AE=,即可得出结果.【详解】(1)连接AD,如图1所示:设∠BDC=γ,∠CAD=β,则∠CAB=∠BDC=γ,∵点C为弧ABD中点,∴,∴∠ADC=∠CAD=β,∴∠DAB=β﹣γ,∵AB为⊙O直径,∴∠ADB=90°,∴γ+β=90°,∴β=90°﹣γ,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣γ)=90°﹣90°+γ+γ=2γ,∴∠ABD=2∠BDC,∴∠BDC=∠ABD=α;(2)连接BC,如图2所示:∵AB为⊙O直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵CE⊥AB,∴∠ACE+∠BAC=90°,∴∠ACE=∠ABC,∵点C为弧ABD中点,∴,∴∠ADC=∠CAD=∠ABC=β,∴∠ACE=β;(3)连接OC,如图3所示:∴∠COB=2∠CAB,∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,∵∠OHC=∠ADB=90°,∴△OCH∽△ABD,∴==,∴BD=2OH=10,∴AB===26,∴AO=13,∴AH=AO+OH=13+5=18,∵∠EAH=∠BAD,∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州信息科技学院《亲子教育活动设计》2023-2024学年第一学期期末试卷
- 江西农业大学南昌商学院《税收》2023-2024学年第一学期期末试卷
- 湖南艺术职业学院《误差理论与测绘平差基础》2023-2024学年第一学期期末试卷
- 衡水学院《有机化学B》2023-2024学年第一学期期末试卷
- 重庆交通大学《元典阅读与笔记2》2023-2024学年第一学期期末试卷
- 浙江商业职业技术学院《形体与舞蹈(一)》2023-2024学年第一学期期末试卷
- 中国戏曲学院《小企业会计准则》2023-2024学年第一学期期末试卷
- 长春汽车工业高等专科学校《自然地理学理论与方法》2023-2024学年第一学期期末试卷
- 浙江纺织服装职业技术学院《数据分析与SPSS实现》2023-2024学年第一学期期末试卷
- 食品卫生安全监管技术应用
- 2025年山东光明电力服务公司招聘笔试参考题库含答案解析
- 《神经发展障碍 儿童社交沟通障碍康复规范》
- 2025年中建六局二级子企业总经理岗位公开招聘高频重点提升(共500题)附带答案详解
- 2024年5月江苏省事业单位招聘考试【综合知识与能力素质】真题及答案解析(管理类和其他类)
- 注浆工安全技术措施
- 2024年世界职业院校技能大赛“食品安全与质量检测组”参考试题库(含答案)
- 2023上海高考英语词汇手册单词背诵默写表格(复习必背)
- 人民军队历史与优良传统(2024)学习通超星期末考试答案章节答案2024年
- DB11T 641-2018 住宅工程质量保修规程
- 幼儿园幼儿营养食谱手册
- 2024宏泰集团所属湖北省征信限公司招聘9人高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论