版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知相似.()A. B. C. D.2.点关于原点的对称点坐标是()A. B. C. D.3.对于函数,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小4.已知关于x的一元二次方程x2-(2k+1)x+k+1=0,若x1+x2=3,则k的值是()A.0 B.1 C.﹣1 D.25.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°6.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A. B. C. D.无法确定7.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.8.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形9.图中的两个梯形成中心对称,点P的对称点是()A.点A B.点B C.点C D.点D10.下列几何体中,主视图和左视图都是矩形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=2:3,则△ADE与△ABC的面积之比为________.12.已知在中,,,,那么_____________.13.在Rt△ABC中,∠C=90°,tanA=,△ABC的周长为18,则S△ABC=____.14.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.15.若抛物线经过(3,0),对称轴经过(1,0),则_______.16.如图所示,点为平分线上一点,以点为顶点的两边分别与射线,相交于点,,如果在绕点旋转时始终满足,我们就把叫做的关联角.如果,是的关联角,那么的度数为______.17.如图,四边形的两条对角线、相交所成的锐角为,当时,四边形的面积的最大值是______.18.方程的根是__________.三、解答题(共66分)19.(10分)解方程:(1)(公式法)(2)20.(6分)某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了元,则这种衬衫的售价为___________元,销售量为____________件.(2)列方程完成本题的解答.21.(6分)如图,中,,,为内部一点,且.(1)求证:;(2)求证:.22.(8分)阅读理解,我们已经学习了点和圆、直线和圆的位置关系以及各种位置关系的数量表示,如下表:类似于研究点和圆、直线和圆的位置关系,我们也可以用两圆的半径和两圆的圆心距(两圆圆心的距离)来刻画两圆的位置关系.如果两圆的半径分别为和(r1>r2),圆心距为d,请你通过画图,并利用d与和之间的数量关系探索两圆的位置关系.图形表示(圆和圆的位置关系)数量表示(圆心距d与两圆的半径、的数量关系)23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.24.(8分)空间任意选定一点,以点为端点,作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,,,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组所对应的码放的几何体是______________;A.B.C.D.(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,,,,,表示)(4)当,,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______,______),此时求出的这个几何体表面积的大小为____________(缝隙不计)25.(10分)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.26.(10分)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.x(元/件)15182022…y(件)250220200180…(1)直接写出:y与x之间的函数关系;(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
参考答案一、选择题(每小题3分,共30分)1、A【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:已知给出的三角形的各边分别为1、、,只有选项A的各边为、2、与它的各边对应成比例.故选:A.【点睛】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握.2、B【分析】坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.【详解】根据中心对称的性质,得点关于原点的对称点的坐标为.故选B.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.3、C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y随x增大而减小,它的图像即是轴对称图形又是中心对称图形.故选C点睛:反比例函数的图像与性质:1、当k>0时,图像在一、三象限,在每个象限内,y随x增大而减小;2、当k<0时,图像在二、四象限,在每个象限内,y随x增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形.4、B【分析】利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【详解】解:设方程的两个根分别为x1,x2,
由x1+x2=2k+1=3,
解得:k=1,
故选B.【点睛】本题考查了一元二次方程的根与系数的关系,能把求k的值的问题转化为解方程得问题是关键.5、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.6、C【分析】根据概率P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【详解】以自由转动的转盘,被分成了6个相同的扇形,白色区域有4个,因此=,故选:C.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的求解方法.7、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C.考点:简单几何体的三视图.8、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.9、C【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:
图中的两个梯形成中心对称,点P的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.10、C【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A.主视图为圆形,左视图为圆,故选项错误;B.主视图为三角形,左视图为三角形,故选项错误;C.主视图为矩形,左视图为矩形,故选项正确;D.主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.二、填空题(每小题3分,共24分)11、4:1【解析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案为:4:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.12、1【分析】根据三角函数的定义即可求解.【详解】∵cotB=,
∴AC==3BC=1.
故答案是:1.【点睛】此题考查锐角三角函数的定义及运用,解题关键在于掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切为邻边比对边.13、【解析】根据正切函数是对边比邻边,可得a、b的值,根据勾股定理,可得c根据周长公式,可得x的值,根据三角形的面积公式,可得答案.【详解】由在Rt△ABC中,∠C=90°,tanA=,得a=5x,b=12x.由勾股定理,得c==13x.由三角形的周长,得5x+12x+13x=18,解得x=,a=3,b=.S△ABC=ab=×3×=.故答案为:.【点睛】本题考查了解直角三角形,利用正切函数表示出a=5x,b=12x是解题关键.14、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.15、1【分析】由题意得,由函数图象的对称轴为直线x=1,根据点(3,1),求得图象过另一点(−1,1),代入可得a−b+c=1.【详解】解:由题意得:抛物线对称轴为直线x=1,又图象过点(3,1),∵点(3,1)关于直线x=1对称的点为(-1,1),
则图象也过另一点(−1,1),即x=−1时,a−b+c=1.
故答案为:1.【点睛】本题主要考查图象与二次函数系数之间的关系以及二次函数的对称行,重点是确定点(3,1)关于直线x=1对称的点为(-1,1).16、【分析】由已知条件得到,结合∠AOP=∠BOP,可判定△AOP∽△POB,再根据相似三角形的性质得到∠OPA=∠OBP,利用三角形内角和180°与等量代换即可求出∠APB的度数.【详解】∵∴∵OP平分∠MON∴∠AOP=∠BOP∴△AOP∽△POB∴∠OPA=∠OBP在△OBP中,∠BOP=∠MON=25°∴∠OBP+∠OPB=∴∠OPA+∠OPB=155°即∠APB=155°故答案为:155°.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定定理是解题的关键.17、【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x,则BD=8-x所以,∴当x=4时,四边形ABCD的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.18、,【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【详解】解:x2=3xx2﹣3x=0即x(x﹣3)=0∴,故本题的答案是,.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.三、解答题(共66分)19、(1),(2),【分析】(1)利用公式法解一元二次方程,即可得到答案;(2)利用因式分解法解一元二次方程,即可得到答案.【详解】解:(1),∵,,,∴,∴,∴,;(2),∴,∴,∴或,∴,.【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的方法和步骤.20、(1),;(2)(60+x−50)(800−1x)=1100,2,见解析【分析】(1)根据销售价等于原售价加上提价,销售量等于原销售量减去减少量即可;(2)根据销售利润等于单件的利润乘以销售量即可解答.【详解】(1)设这种衬衫应提价x元,则这种衬衫的销售价为(60+x)元,销售量为(800−x)=(800−1x)件.故答案为(60+x);(800−1x).(2)根据(1)得:(60+x−50)(800−1x)=1100整理,得x2−30x+10=0解得:x1=10,x2=1.为使顾客获得更多的优惠,所以x=10,60+x=2.答:这种衬衫应提价10元,则这种衬衫的销售价为2元.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握销售问题的关系式.21、(1)证明见解析;(2)证明见解析.【分析】(1)利用等腰三角形的性质、三角形内角和定理以及等式的性质判断出∠PBC=∠PAB,进而得出结论;
(2)由(1)的结论得出,进而得出,即可得出结论.【详解】证明:(1)∵,,∴,又,∴,∴,又∵,∴;(2)∵,∴在中,,∴,∴,∴.【点睛】本题主要考查相似三角形的判定与性质的知识点,熟练三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质,勾股定理等知识点,综合性较强,有一定难度.22、见解析【分析】两圆的位置关系可以从两圆公共点的个数来考虑.两圆无公共点(即公共点的个数为0个),1个公共点,2个公共点,或者通过平移实验直观的探索两圆的相对位置,最后得出答案.初中阶段不考虑重合的情况;【详解】解:如图,连接,设的半径为,的半径为圆和圆的位置关系(图形表示)数量表示(圆心距d与两圆的半径r1、r2的数量关系)【点睛】本题考查两圆的五种位置关系.经历探索两个圆之间位置关系的过程,训练学生的探索能力;通过平移实验直观的探索两个圆之间位置关系,发展学生的识图能力和动手操作能力.从“形”到“数”和从“数”到“形”的转化是理解本题的关键.23、(1)0.3,45;(2)108°;(3).【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)B;(2)2,3,2,1;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2【分析】(1)根据几何体码放的情况,即可得到答案;(2)根据几何体的三视图,可知:几何体有2排,3列,2层,进而即可得到答案;(3)根据有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,即可得到答案;(4)由题意得:xyz=1,=4yz+6xz+8xy,要使的值最小,x,y,z应满足x≤y≤z(x,y,z为正整数),进而进行分类讨论,即可求解.【详解】(1)∵有序数组所对应的码放的几何体是:3排列4层,∴B选项符合题意,故选B.(2)根据几何体的三视图,可知:几何体有2排,3列,2层,∴这种码放方式的有序数组为(2,3,2),∵几何体有2层,每层有6个单位长方体,∴组成这个几何体的单位长方体的个数为1个.故答案是:2,3,2;1.(3)∵有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,∴=2(yzS1+xzS2+xyS3).(4)由题意得:xyz=1,=4yz+6xz+8xy,∴要使的值最小,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿园租赁合同(包括幼儿园特色课程开发及教学成果展示)3篇
- 2016-2020年印度尼西亚投资环境分析及前景预测报告
- 出差管理制度及出差标准
- 2024年租房付款条款3篇
- 2025年度离婚协议书定制与婚姻财产分割法律援助合同3篇
- 2024版消防安装工程施工合同书
- 重庆旅游职业学院《病原微生物学实验》2023-2024学年第一学期期末试卷
- 2025年度15%股权转让与市场推广服务合同2篇
- 山西大学《航空计算机组成与结构》2023-2024学年第一学期期末试卷
- 2025年度餐厅智能化改造承包经营合同3篇
- 生姜的产地分布
- 普通高中学业水平合格性考试(会考)语文试题(附答案)
- 2021年国家公务员考试申论试题及答案(地市级)
- 2020年10月自考00020高等数学一高数一试题及答案含评分标准
- 2023年资产负债表模板
- GB/T 10058-2023电梯技术条件
- (完整word版)酒店流水单
- 校服采购投标方案
- 居民健康档案管理培训课件
- 学校食堂食品安全管理25项制度
- 班主任经验交流PPT
评论
0/150
提交评论