2023届山东省菏泽市牡丹区牡丹中学九年级数学第一学期期末经典模拟试题含解析_第1页
2023届山东省菏泽市牡丹区牡丹中学九年级数学第一学期期末经典模拟试题含解析_第2页
2023届山东省菏泽市牡丹区牡丹中学九年级数学第一学期期末经典模拟试题含解析_第3页
2023届山东省菏泽市牡丹区牡丹中学九年级数学第一学期期末经典模拟试题含解析_第4页
2023届山东省菏泽市牡丹区牡丹中学九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为()A.向左平移个单位,向下平移个单位B.向左平移个单位,向上平移个单位C.向右平移个单位,向下平移个单位D.向右平移个单位,向上平移个单位2.中,,是边上的高,若,则等于()A. B.或 C. D.或3.下列方程是一元二次方程的是()A. B. C. D.4.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大. D.当y增大时,BE·DF的值不变.5.二次函数图象的顶点坐标是()A. B. C. D.6.把分式中的、都扩大倍,则分式的值()A.扩大倍 B.扩大倍 C.不变 D.缩小倍7.如图,DE是的中位线,则与的面积的比是A.1:2B.1:3C.1:4D.1:98.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.49.下列方程中,满足两个实数根的和等于3的方程是()A.2x2+6x﹣5=0 B.2x2﹣3x﹣5=0 C.2x2﹣6x+5=0 D.2x2﹣6x﹣5=010.二次函数=ax2+bx+c的部分对应值如表,利用二次的数的图象可知,当函数值y>0时,x的取值范围是()x﹣3﹣2﹣1012y﹣12﹣50343A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>3二、填空题(每小题3分,共24分)11.已知,且,且与的周长和为175,则的周长为_________.12.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.13.如图,根据图示,求得和的值分别为____________.14.如图,为外一点,切于点,若,,则的半径是______.15.如果x:y=1:2,那么=_____.16.已知:如图,在平面上将绕点旋转到的位置时,,则为__________度.17.如图示一些小正方体木块所搭的几何体,从正面和从左面看到的图形,则搭建该几何体最多需要块正方体木块.18.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=.三、解答题(共66分)19.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.20.(6分)课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)在下边的图形中,画出所有符合题意的图形;(2)求BF的长.21.(6分)如图,直线与双曲线在第一象限内交于两点,已知.(1)求的值及直线的解析式.(2)根据函数图象,直接写出不等式的解集.(3)设点是线段上的一个动点,过点作轴于点是轴上一点,当的面积为时,请直接写出此时点的坐标.22.(8分)如图,一次函数y=kx+b(b=0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n)(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)若kx+b<,直接写出x的取值范围.23.(8分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上;②直接写出∠BDC的度数(用含α的式子表示)为;(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC=2a,试写出此时BF的值.24.(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)画出关于原点对称的;(2)将绕顺时针旋转,画出旋转后得到的,并直接写出此过程中线段扫过图形的面积.(结果保留)25.(10分)已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.26.(10分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?

参考答案一、选择题(每小题3分,共30分)1、D【解析】二次函数y=x1+4x+3=(x+1)1-1,将其向右平移1个单位,再向上平移1个单位得到二次函数y=x1.故选D.点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.2、B【分析】根据题意画出图形,当△ABC中为锐角三角形或钝角三角形两种情况解答,结合已知条件可以推出△ABD∽△BCD,即可得出∠ABC的度数.【详解】(1)如图,当△ABC中为锐角三角形时,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠C=60°,∠A=∠CBD=30°,

∴∠ABC=90°.

(2)如图,当△ABC中为钝角三角形时,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,

∴∠ABC=30°.

故选择B.【点睛】本题考查了相似三角形的判定与性质,将三角形分锐角三角形和钝角三角形分别讨论是解题的关键.3、C【解析】试题解析:A、,没有给出a的取值,所以A选项错误;B、不含有二次项,所以B选项错误;C、是一元二次方程,所以C选项正确;D、不是整式方程,所以D选项错误.故选C.考点:一元二次方程的定义.4、D【解析】试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为,因此,当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=,当y=9时,,即EC=,所以,EC<EM,选项B错误;根据等腰直角三角形的性质,EC=,CF=,即EC·CF=,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.故选D.考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.5、A【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵,∴二次函数图像顶点坐标为:.故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).6、C【分析】依据分式的基本性质进行计算即可.【详解】解:∵a、b都扩大3倍,∴∴分式的值不变.故选:C.【点睛】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.7、C【分析】由中位线可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4.故选C.【点睛】本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方.8、C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC=;(4)根据(1)求得的x的长与EF不相等,进而可以判断CF≠GE.【详解】解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,则3﹣x=,∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正确;(4)∵GF=,EF=1,点F不是EG的中点,CF≠GE,所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点睛】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.9、D【分析】利用根与系数的关系判断即可.【详解】满足两个实数根的和等于3的方程是2x2-6x-5=0,故选D.【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.10、C【分析】利用表中数据和抛物线的对称性得到抛物线的对称轴为直线x=1,则抛物线的顶点坐标为(1,4),所以抛物线开口向下,则抛物线与x轴的一个交点坐标为(3,1),然后写出抛物线在x轴上方所对应的自变量的范围即可.【详解】∵抛物线经过点(1,3),(2,3),∴抛物线的对称轴为直线,∴抛物线的顶点坐标为(1,4),抛物线开口向下,∵抛物线与x轴的一个交点坐标为(﹣1,1),∴抛物线与x轴的一个交点坐标为(3,1),∴当﹣1<x<3时,y>1.故选:C.【点睛】本题考查了二次函数与轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题.二、填空题(每小题3分,共24分)11、1【分析】根据相似三角形的性质得△ABC的周长:△DEF的周长=3:4,然后根据与的周长和为11即可计算出△ABC的周长.【详解】解:∵△ABC与△DEF的面积比为9:16,∴△ABC与△DEF的相似比为3:4,

∴△ABC的周长:△DEF的周长=3:4,∵与的周长和为11,

∴△ABC的周长=×11=1.

故答案是:1.【点睛】本题考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.12、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.13、4.5,101【分析】证明,然后根据相似三角形的性质可解.【详解】解:∵,,∴,∵,∴,∴,,∴AC=4.5,y=101.故答案是:x=4.5,y=101.【点睛】本题考查了相似三角形的判定和性质,要熟悉相似三角形的各种判定方法,关键在找角相等以及边的比例关键.14、1【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=1,故答案为:1.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.15、【分析】根据合比性质,可得答案.【详解】解:,即.故答案为.【点睛】考查了比例的性质,利用了和比性质:.16、1【分析】结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算.【详解】解:∵AA′∥BC,

∴∠A′AB=∠ABC=65°.

∵BA′=AB,

∴∠BA′A=∠BAA′=65°,

∴∠ABA′=1°,

又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',

∴∠CBC′=∠ABA′=1°.

故答案为:1.【点睛】本题考查旋转的性质以及平行线的性质.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17、16【解析】根据俯视图标数法可得,最多有1块;故答案是1.点睛:三视图是指一个立体图形从上面、正面、侧面(一般为左侧)三个方向看到的图形,首先我们要分清三个概念:排、列、层,比较好理解,就像我们教室的座位一样,横着的为排,竖着的为列,上下的为层,如图所示的立体图形,共有两排、三列、两层.仔细观察三视图,可以发现在每一图中,并不能同时看到排、列、层,比如正视图看不到排,这个很好理解,比如在教室里,如果第一排的同学个子非常高,那么后面的同学都被挡住了,我们无法从正面看到后面的同学,也就无法确定有几排.所以,我们可以知道正视图可看到列和层,俯视图可看到排和层列,侧视图可看到排和层.18、π.【解析】图1,过点O做OE⊥AC,OF⊥BC,垂足为E.

F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3−r,BD=4−r∴3−r+4−r=5,r==1∴S1=π×12=π图2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5−=,由(1)得:⊙O的半径=,⊙E的半径=,∴S1+S2=π×()2+π×()2=π.图3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4−=,由(1)得:⊙O的半径=,⊙E的半径=,∴⊙F的半径=,∴S1+S2+S3=π×()2+π×()2+π×()2=π三、解答题(共66分)19、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC为底的高是10,从而求得三角形ABC的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S△ABC=×2×1=1.20、(1)补全图形见解析;(2)BF=(+2)cm或BF=(-2)cm.【分析】(1)分两种情况:①△DEF在△ABC外部,②△DEF在△ABC内部进行作图即可;(2)根据(1)中两种情况分别求解即可.【详解】(1)补全图形如图:情况Ⅰ:情况Ⅱ:(2)情况Ⅰ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(+2)cm.情况Ⅱ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(-2)cm.【点睛】本题主要考查了勾股定理与解直角三角形的综合运用,熟练掌握相关概念是解题关键.21、(1),(2)解集为或(3)【分析】(1)先把B(2,1)代入,求出反比例函数解析式,进而求出点A坐标,最后用待定系数法,即可得出直线AB的解析式;(2)直接利用函数图象得出结论;(3)先设出点P坐标,进而表示出△PED的面积等于,解之即可得出结论.【详解】解:(1):∵点在双曲线上,∴,∴双曲线的解析式为.∵在双曲线,∴,∴.∵直线过两点,∴,解得∴直线的解析式为(2)根据函数图象,由不等式与函数图像的关系可得:双曲线在直线上方的部分对应的x范围是:或,∴不等式的解集为或.(3)点的坐标为.设点,且,则.∵当时,解得,∴此时点的坐标为.【点睛】此题是反比例函数综合题,主要考查了一次函数和反比例函数的图象和性质,待定系数法,三角形的面积公式,求出直线AB的解析式是解本题的关键.22、(1),y=﹣x+2;(2)9;(3)x>6或﹣3<x<1【分析】(1)根据A的坐标求出反比例函数的解析式,求出B点的坐标,再把A、B的坐标代入y=kx+b,求出一次函数的解析式即可;(2)先求出点C的坐标,再根据三角形的面积公式求出即可;(3)根据A、B的坐标和图象得出即可.【详解】解:(1)把A点的坐标(﹣3,4)代入y=得:m=﹣12,即反比例函数的解析式是y=,把B点的坐标(6,n)代入y=﹣得:n=﹣2,即B点的坐标是(6,﹣2),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=2,所以一次函数的解析式是y=﹣x+2;(2)设一次函数y=﹣x+2与x轴的交点是C,y=﹣x+2,当y=1时,x=3,即OC=3,∵A(﹣3,4),B(6,﹣2),∴△AOB的面积S=S△AOC+S△BOC==9;(3)当kx+b<时x的取值范围是x>6或﹣3<x<1.【点睛】本题考查了一次函数和反比例函数的综合问题,掌握一次函数和反比例函数的图象和性质、三角形面积公式是解题的关键.23、(1)①详见解析;②α;(2)详见解析;(3)当B、O、F三点共线时BF最长,(+)a【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB,即可证点B,C,D在以点A为圆心,AB为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC,可求∠BDC的度数;(2)连接CE,由题意可证△ABC,△DCE是等边三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根据“SAS”可证△BCD≌△ACE,可得AE=BD;(3)取AC的中点O,连接OB,OF,BF,由三角形的三边关系可得,当点O,点B,点F三点共线时,BF最长,根据等腰直角三角形的性质和勾股定理可求,,即可求得BF【详解】(1)①连接AD,如图1.∵点C与点D关于直线l对称,∴AC=AD.∵AB=AC,∴AB=AC=AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=α故答案为:α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC=2a,∴,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴,∵点O是AC中点,AC=2a,∴,∴,∴BH=3a,∴,∵点C关于直线l的对称点为点D,∴∠AFC=90°,∵点O是AC中点,∴,∴,∴当B、O、F三点共线时BF最长;最大值为(+)a.【点睛】本题是三角形综合题,考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论