版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章核医学成像主要内容第一节概述第二节核医学成像的基本原理和技术第三节成像设备工作原理第一节概述核医学的定义:核医学是核技术与医学相结合的学科核医学的任务是用放射性核素及核技术来诊断、治疗及研究疾病。核医学涉及的学科:核物理、核电子、核探测、计算机控制及图像处理、数学、放射化学、医学的各科等。核医学成像过程:先把某种放射性同位素标记在药物上,形成放射性药物并引入体内,当他被人体的脏器和组织吸收以后,就在体内形成了辐射源。用γ射线检测装置可以在体外检测体内放射性核素在衰变过程中放出的γ射线,从而构成放射性同位素在体内分布密度的图像。由于放射性药物与一般天然元素或化合物一样,能够参与机体的物质代谢,因此核医学成像的图像不仅反映了脏器和集体组织的形态,更重要的是提供了有关脏器功能及相关的生理、生化信息。核医学发展简史:序幕:
1896年法国物理学家贝可勒尔发现铀的放射性,第一次认识到放射现象。1898年居里夫妇成功提取放射性钋和镭1926年美国内科医师Blungare首先应用氡研究循环时间第一次应用了示踪技术,后来又进行了多领域的生理、病理及药理方面的研究,因此,被称为“核医学之父”。1934年居里夫妇第一次人工获得了放射性30P,从此人们开阔了眼界,看到了核子和平利用的前景。初具规模:1942年费米在芝加哥大学建立了世界上第一座核反应堆,开始生产131I、32P等少量放射性核素,到1946年生产品种和量都有了增加.核医学仪器也在不断地研制,51年第一台γ-扫描仪制成,实现了心、肾、肝、胆功能测定,肾、脾、骨、甲状腺的扫描。从此核医学的临床应用初步具备了自己的理论基础方法和手段,为今后的发展奠定了基础。迅速发展阶段:60年代始主要是利用加速器和发生器生产出更多,更符合临床要求的放射性核素。γ-相机问世。Yalow和Berson教授开创体外放射性核素,对医学产生了巨大影响。现代核医学阶段
70年代后期,研制成功核素断层显像SPECT装置及心、脑功能显像剂和单克隆技术的应用,计算机的广泛应用、99Mo-99mTc发生器广泛应用使核医学进入了特色鲜明的新阶段。
1975年第一台PET研制成功,相继实现了利用PET正电子发射体(11C、13N、15O和18F)标记化合物进行脑和心肌灌注氧耗量、葡萄糖代谢、蛋白质、脂肪代谢显像,神经受体显像也获得成功,开创了在分子水平无创性活体研究人脑功能,心肌存活等,进入了分子核医学的新时代。成为80年代后的核医学前沿。放射性核素显像
Radionuclearimaging,RNI■将放射性药物通过注射或口服引入体内,吸收后能在某一器官内积聚而成为放射源。用核素成像仪器探测处理,显示核素浓度分布,反映人体代谢(功能)动态变化(物质的输运、集聚、排泄、物质代谢及其分布)●RNI是四大医学影像之一■功能性显像为主,形态解剖结构显像为辅●主要技术:①γ相机;②单光子发射型计算机断层(SPECT);③正电子发射型计算机断层(PET);●RNI技术特点:①检测灵敏度高;10-14~10-18g,一般化学方法难以测出;②定性、定量、定位;③测量简便:只对放射性核素示踪物进行测量;④准确性高:微量示踪物,不干扰研究对象的正常生理、生化过程;⑤功能性显像;一、放射性核素显像的技术特点●示踪的基本根据:①同一元素的同位素化学性质相同,在生物体内的化学变化和生物学过程相同,生物体不能区别,可以用放射性核素代替同位素中的稳定性核素;②放射性核素能放射出易被探测到的射线(示踪原子),放射性测量仪器可以对它标记的物质进行定性、定量及定位测量。■放射性核素分布反映了体内脏器的功能和代谢情况。►如:甲状腺有摄取或浓集131I的功能,131I的摄取速度和摄取量与甲状腺功能状态有关。二、核素示踪核医学检查项目统计情况检查项目所占比例(%)
骨显象25脑显象2心肌血流灌注显象35肿瘤定位显象15肝胆/肾脏显象5呼吸系统显象12甲状腺显象5其他1注:骨和心肌显象占60%的总检查
三、放射性制剂
放射性药物是能够安全用于诊断的放射性标记化合物
标记物放射性核素
被标记物化合物(药物)在特定组织内选择性积聚参与生理、生化代谢过程125I125I-胰岛素18F18F-脱氧葡萄糖(FDG)例如:●
核素要求
1.能量适中:100~400KeV,一般临床应用50~500KeV
太低易被机体吸收,探测效率低;太高准值效果差(屏蔽困难),空间分辨率低
2.半衰期适中:①T1/2尽可能短——减少辐射剂量;②核素在靶器官有合适的存留时间,保障探测采集足够的数据;③显像后,放射性药物应尽快地从体内清除掉,减少辐射危害。一、核医学成像用放射性核素第二节核医学成像的物理基础4.稳定性好:①化学结构稳定,不易发生分解、氧化还原等化学反应;②核素与化合物结合稳定,不因体内介质条件或生物活性物质的改变(如酶作用)而发生分解、变性和脱落;③对自身辐射作用耐受能力高。5.无毒害:核素的衰变产物应该是稳定产物。3.易标记:合适的化学价态和较强的化学活性。2.碘(I):
γ98%;668KeV(伴有β射线);能量(偏高,探测效率低,分辨率差);
T1/28.04h。●适合于甲状腺、肾、肝、脑、肺、胆显像,功能测量和治疗■
常用于临床的放射性核素
1.锝(Tc):
γ90%;不伴有β辐射;能量140KeV(适合探测);
T1/26.02h●适合所有器官显像。3.正电子衰变类(用于PET)
11C20.3min;13N10min;15O123s;18F110min
●优点:
①人体的基本元素,易于标记各种生命所必需的化合物及其代谢产物,且易于参与人体生理、生化代谢过程;②T
½短,检查时可给予较大的剂量,提高对比度和分辨率;③反映人体生理、生化、病理和功能等方面的改变。反映精神情感、思维、行为等人脑的活动。二、γ能谱光电效应(PE)→全部能量→光电峰(全能峰)。表征核素特征康普顿散射→部分能量、散射角→脉冲幅度低、范围分布宽义:①计数率测定时,避免其他能量γ射线的干扰;②鉴定放射性同位素种类和含量1956年Anger发明了闪烁γ相机①同时纪录各脏器核素的射线,成像时间短;②探头灵活,可进行多体位成像,使用方便;③Polaroid相机一步显、定影,定时相机连续拍摄,反映代谢过程的动态变化;Thetumorsarethedarkareas第三节γ相机探头位置信号能量信号照相示波器XYZγ射线源一、γ照相机的基本结构(一)探头装置1、准直器
——空间定位●作用:允许特定方向γ光子进入探测器,屏蔽与孔角不符的散射光子。●材料:铅或铅合金;屏蔽效果好;易加工(一)探头装置不同类型准值器临床应用类型特点临床应用备注针孔准直器对小脏器具有放大作用,计数率高主要用于甲状腺显像准直器到脏器的距离影响脏器图像的大小平行孔准直器准直器到脏器的距离影响图像质量,但不影响脏器大小.临床上最常用的准直器,适用于各脏器扇型准直器明显提高计数率,图像分辨率不受影响常用于脑显像使用扇型准直器时,不能同时使用实时人体轮廓技术准直器类型孔径mm
孔数(个)长度(mm)壁厚(mm)系统灵敏度kps/mCi系统分辨率(mm)低能通用准直器1.932900350.22708.7低能高分辨准直器1.518100350.21607.9中能通用准直器2.310000331.519010.7高能通用准直器2.65400362.614010.4不同准值器的物理性能2、闪烁晶体●闪烁体:掺入约0.5%铊(Tl)做激活剂的碘化钠(NaI)透明晶体。NaI(Tl)晶体优点:①γ射线阻滞本领高(探测效率高);②荧光闪烁时间短(时间分辨力高);③荧光光子数与γ射线能量的线性关系好●光学收集系统提高光电转换传输效率(减少反射)反射层(氧化镁)和光耦合剂(硅油、甘油等)组成光收集系统
光导:非直接耦合材料:聚乙烯基甲苯、有机玻璃、光导纤维等3、光电倍增管光电转换:光敏阴极受激产生光电子光电倍增:(106~108)电信号放大;γ光子的数目越多,相应的脉冲数目也越多。(二)电子学系统——位置信号和Z信号●将光电倍增管输出的电脉冲信号转换为确定晶体闪烁点位置的X、Y信号和确定入射γ射线的能量信号。(三)显示和记录基本显示装置——示波器记忆示波器——储存图像;普通示波器——照相;普通示波器——图像观察功能测定装置——计数率仪将计数率转化为直流电信号,绘制放射性活度随时间变化曲线,显示脏器功能状况二、γ照相机的性能指标及质量控制●测试标准:美国电器制造商会(NEMA)标准NationalElectricalManufacturersAssociation●空间分辨力:两个点(线)源的分辨距离;半高宽度FWHM;调制传递函数MTF●图像质量控制:探测灵敏度和图像的线性►幅度分析器窗位→γ全能峰→探测灵敏度→对比度、均匀性等►准直器、X、Y位置线路→图像线性→图像与实物比例、对称性第四节
单光子ECTECT类型:
ECT利用γ相机原理,加入计算机信息处理功能,可对某一断层进行成像。据射线源性质的不同,ECT可分为两类。●SPECT(SinglePhotonECT):探测的示踪核素为放射出γ射线(单光子)的核素;●PECT(PositronECT):探测的核素为放射出正电子(β+)的核素。1、SPECT成像的本质与方法探头围绕病人某一脏器进行360°旋转的γ相机,在旋转时每隔一定角度(3°或6°)采集一帧图片经计算机处理,将图像叠加,利用滤波反投影方法,从一系列投影像重建横断层影像。由横断层影像的三维信息再经影像重新组合可以得到矢状、冠状断层和任意斜位方向的断层影像。●SPECT断层厚度:采集全部数据并处理后任意选定●SPECT成像原理:2、数据的衰减校正■取决于人体衰减系数图(μmap)的获取和衰减校正的算法。量化精度±25%~50%平均衰减校正:设人体等密度,衰减只与光子路经有关;人体或脏器假定为椭圆;据指数衰减公式建立断层衰减图;据图给出的光子通量与路径的关系对断层图像上各像素进行信号强度补偿●SPECT是通过γ射线的体外技术来标定体内放射性活度,无衰减时计数率正比于放射性活度●断层中γ射线的衰减与路经和组织成分等因素有关3、旋转中心偏移检查
——断层时加以校正δ<1.5mm(约0.5像素)4、断层均匀性测量圆柱体模型99mTc溶液555MBq计算模型断层图像相对误差断层5、断层分辨力的测量
——采集三个点源断层数据→重建断面图像→求FWHM6、总体性能评价
——3600
采集数据,经均匀度、衰减校正,重建横向断层图像,确定分辨阳模和阴模的极限值●SPECT的临床应用SPECT影像仅描绘了体内组织和脏器断层中放射性核素的浓度(生理、生化过程)分布,这种分布不是有关断层的解剖学形态.1、全身骨显像:
1)恶性肿瘤骨转移的早期诊断:骨显像可较X线片提前3-6个月发现病变2)原发性骨骼肿瘤累及范围的判断和疗效观察。
3)股骨头无菌性坏死的早期诊断。2、局部脑血流灌注断层显像(rCBF):
1.TIA:发作后CT和MRI多为阴性,rCBF显像可发现近50%的患者脑内有缺血性改变。
2.脑梗死:诊断阳性率近100%,在发病早期病变区无明显结构变化时即可显示异常。
3.神经科疾病病灶的定位诊断:发作间期显像阳性率约60%,远高于CT(约25%)和MRI检查。
4.早老性痴呆(Alzheimer病)和多发性梗塞性痴呆的鉴别诊断
BrainImagingThisfigureisatransverseSPECTimageofthebrain.
Notethehotspotspresentintherightposteriorregion.Scanindicatingmalfunctionoftheleftkidney
第五节正电子发射型计算机断层(PET)●PET采用贫中子的短寿命同位素11C、13N、15O、18F,是构成人体的主要元素,放射出的β+
射线产生的湮没光子实现断层显像。便于“跟踪”、“探测”人体生理、生化活动,不干扰机体结构和生物变化过程一、概述正电子湮灭前在人体组织内行进1-3mm同时产生互成180°的511keV的γ光子。●利用符合计数法探测淹没辐射的光子1、自准直符合计数方法●位于扫描断层两侧的一对探头同时接收到湮没光子时,符合计数探测要求,才有信号输出(符合事件,否则为无效辐射)。二、PET成像原理探头探头能量、时间鉴别能量、时间鉴别与门符合检测电路符合测定符合探测时间10-8s①直线性:一对互成1800
的探头,探测体内发射出的互成1800
的γ光子,电子准直探测效率高。——符合线路②同时性:15ns
内进入的2个γ光子视为同时发生的γ光子,予以探测
———高精度时间控制器符合探测原理PET各种符合事件同时同地;互成1800;511keV无时间与空间相互关系能量小于511MkeV,不成1800事件PET的电子准直1964年环状头部PET省去了沉重的铅制准直器,改进了点响应函数的灵敏度和均匀性。不再因准直器的使用损失了很大部分探测效率。避免了准直器对分辨率和均匀性不利的影响。利用了一部分被准直器挡住的γ光子,极大地提高了探测灵敏度。PET的灵敏度比SPECT高10倍以上。使用铅准直器的SPECT系统分辨率为8-16mm,而电子准直的PET系统分辨率为3-8mm。
a)SPECTdetectionsystem;
b)PETdetectionsystem.PET电子准直的特点●环绕360°排列多组配对探头,探头对间符合线路检验判定每只探头信号,排除其它来源射线的干扰,得到探头对连线上的一维信息;●用滤波反投影方式,将信号按探头对的空间位置向中心点反投射,便可形成与探头组连线轴平行的断层面正电子发射示踪剂分布图像。●探测方式一次只反映一个层面的信息,实用中常用多层排列的探头对,配合层间符合线路,以利探测并重建更多层面的图像。n个环2n-1个断层像:n个同环符合探测;n-1
个邻环符合探测IllustrationofabrainPETscannerbasedon12cameramodules2、PET图像重建PET系统工作流程回旋加速器产生同位素
热配室化学合成同位素示踪剂注射入人体PET扫描采集投影数据重建获得的浓度分布像临床分析诊断三、投影数据误差校正1、衰减校正符合探测器测得射线强度均匀衰减量只与符合线穿过组织厚度相关校正:用体外线源(如68Ga棒)绕成像体旋转,测得I
空扫测得原始强度I0衰减率校正因子:2、假符合校正①设置隔片阻挡射线;②采用闪烁时间短的晶体;③增设偶然符合电路等粒子的动量的变化导致511keV光子在探测野中产生约4‰弧度的不确定性偏离。对探测环横断面视野直径为70cm的PET,导致2-3mm的位置不确定性。对大视野PET而言,最高分辨率约为3-4mm。校正:图像重建之前,由待测区轮廓和扫描路程精确进行校正3、电子能量的影响●PET的技术优势①应用人体自身分子的主要元素的放射性核素制备示踪分子。准确地反映机体的代谢情况,可提供独特的生理性示踪研究和活体生化显像。因而被称为“生化断层”或“生命断层”。
②正电子核素半衰期极短,如11C、13N、15O和18F的半衰期分别为20、10、2和110min。对人体的辐射剂量甚低,需要时可在一次研究中多次重复检查。
③采用符合线路(CoincidenceCircuit),以电子准直取代铅准直探头,故灵敏度高(不受探测深度限制)、对比度好,如PET的灵敏度较常规γ相机高10~100倍,分辨率(FWHM)达4mm,可有效地检出1cm大小的病灶④均匀度好,有利于数学重建图像,可作组织的衰减校正和时间校正,校正后数据准确可靠,便于作定量分析,探测效率高。
⑤真正的3D探测技术,显示全身的横断、冠状和矢状断面各方位的断层影像。PET三维重建图像四、PET的优势及其缺点●PET的应用评价和发展趋势
主要应用于神经系统(15%~35%)、心血管疾病(15%~25%)、肿瘤学研究(65%~85%)等。1.PET在神经系统疾病的应用
PET显像用于脑血管疾病(CVD)、神经科疾病、老年性痴呆、帕金森病(PD)、神经退行性疾病、神经精神药物研究与脑功能研究等很有价值。2.PET在心脏病学研究中的应用
PET主要用于隐性、高危和疑难冠心病诊断,心肌存活的检测、介入治疗前后监测、心脏移植、心肌病等的诊断及治疗随访观察等。应用18F-FDG-PET显像观察心肌代谢是冠心病诊断的金标准,是目前应用最多的项目。
3.PET在肿瘤诊断与研究中的应用
PET在肿瘤学的诊断与研究中主要用于良恶性鉴别,肿瘤分期、分型、复发、转移的早期诊断和鉴别,以及恶变过程的观察与基础研究等。
冠心病—心肌缺血良性脑膜瘤在PET上呈低代谢区WholebodyPETscansshowi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021学年辽宁省沈阳市郊联体高一下学期期末考试地理试题
- 小学四年级多位数乘除法400题
- 学校爱国卫生建设工作计划
- 儿童蛀牙伤害大
- 命题作文“释放”写作指导及佳作
- 《白血病的规范化疗》课件
- 《加油站HSE管理》课件
- 《龙蟠长城模板》课件
- 汽车工程师的工作总结
- 化工行业销售业绩总结
- 新能源发电技术学习通课后章节答案期末考试题库2023年
- GB/T 42752-2023区块链和分布式记账技术参考架构
- Module 9 (教案)外研版(一起)英语四年级上册
- 初中物理-初三物理模拟试卷讲评课教学课件设计
- DG-TJ 08-2367-2021 既有建筑外立面整治设计标准
- 公文流转单(标准模版)
- 深入浅出Oracle EBS之OAF学习笔记-Oracle EBS技术文档
- XXX大中型公司报价管理办法
- 四年级计算题大全(列竖式计算,可打印)
- 年会主持词:企业年会主持词
- LS 8010-2014植物油库设计规范
评论
0/150
提交评论