版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
图像分割概述阈值法第十二讲图像分割概述阈值分割法一、图像分割概述在对图形的研究与应用中,人们往往对图像中的某些部分感兴趣——目标或对象(一般对应于图像中特定的、具有独特性质的区域)。图像分析:图像中感兴趣的目标进行分割,纹理、形状等特征的提取、检测和测量,以获得它们的客观信息,从而建立对图像的描述。图像理解:重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导决策.图像处理:着重图像之间进行变换以改善图像的视觉效果。图像分析的大致步骤:①把图像分成不同的区域或把不同的对象分开:②找出分开的各区域的特征;③识别图像中要找的对象或对图像分类;④对不同区域进行描述或找出不同区域的相互联系,进而找出相似结构或将相关区域连成一个有意义的结构。相互连通的、有一致属性的像元的结合图像中层描述的符号图像特征统计特征:直方图、矩、频谱等视觉特征:区域的亮度、纹理或轮廓等利用图像特征把图像分解成一系列有意义的目标或区域的过程称为图像分割。图像分割目的:为图像理解和分析作准备。例如提取出感兴趣目标区域,目标可以对应单个区域,也可以对应多个区域。二、图像分割定义集合论定义:
令集合R代表整个图像区域,对R的分割可看做将R分成N个满足以下五个条件的非空子集(子区域)R1,R2,…,RN:①②对所有的i和j,i≠j,有③对i=1,2,…,N,有P(Ri)=TRUE;④对i≠j,有P(Ri∪Rj)=FALSE;⑤对i=1,2,…,N,Ri是连通的区域。其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,φ代表空集。
条件①:在对一幅图象的分割结果中全部子区域的总和(并集)应能包括图象中所有象素(就是原图象)。条件②:在分割结果中各个子区域是互不重叠的,或者说在分割结果中一个象素不能同时属于两个区域。条件③:属于同一个区域中的象素应该具有某些相同特性。条件④:在分割结果中属于不同区域的象素应该具有一些不同的特性。条件⑤:分割结果中同一个子区域内的任两个象素在该子区域内互相连通,或者说分割得到的区域是一个连通组元。
解释:按分割途径分类:1)区域分割
(相似性、不连续性)从图像出发,按“有意义”的属性一致的原则,确定每个像元的归属区域,形成一个区域图。这种方法目前占主导地位。2)基于边缘提取的分割法
(不连续性)先提取区域边界,再确定边界限定的区域。3)区域增长(相似性)从像元出发(种子),按“有意义”的属性一致的原则,将邻域中满足相似性准则的连通像元聚集成区域。4)分裂—合并法综合利用上述两种方法,既存在图像的划分,又有像元的合并。
今后主要的研究方向提取有效的属性;寻求更好的分割途径和分割质量评价体系;分割自动化。三、区域分割法(阈值法)依据:
属于同一区域的像元应具有相同或相似的属性,不同区域的像元属性不同。任务:
寻求具有代表性的属性(如灰度)确定属性的阈值1、简单图像的阈值分割
简单:只具有两类区域不同阈值对阈值化结果的影响(a)原始图像;(b)阈值T=91;(c)阈值T=130;(d)阈值T=43(a)(b)(c)(d)上图(a)所示图像的直方图
自动阈值的确定
1)P参数法(用于目标所占图象面积已知的情况)设图像f(i,j)中目标所占的面积s0与图像面积s之比为P=s0/s,则背景所占面积比为1-P=(s-s0)/s。设低灰度值为背景,高灰度值为目标。如果统计图象f(i,j)灰度值不大于某一灰度t的像元数和图像总像元数之比为1-p时,则以t为阈值,按照下式就可将目标从图象中分割出来。应用场合:图纸和公文图象中对象面积可估计2)状态法(峰谷法)
统计图像的灰度直方图,若其直方图呈双峰且有明显的谷,则将谷所对应的灰度值t作为阈值。适用于:目标和背景的灰度差较大,有明显谷的情况。改进:可采用灰度加权产生新的直方图,得到更大的峰谷比。
3)全局门限处理法以直方图视觉为基础,试探性(1)选择一个t的初始估计值(通常选平均灰度值)(2)阈值t将图像分为c1、c2两部分(3)计算区域c1、c2中所有象素平均值m1、
m2(4)计算新的阈值t=(m1+
m2)/2(5)重复步骤(2)到(4),直到逐次迭代所得的t值之差小于事先定义的参数。(美国国家标准技术研究所提供)4)最大类间方差法(otsu方法)
假定:图像f(i,j)的灰度区间为[0,L-1],选择一阈值t将图像的象元分为c1、c2两组。图像总象元数:w1+w2灰度均值:m=(m1w1+m2w2)/(w1+w2)C1
:
f(i,j)<t,象元数:w1灰度均值:m1均方差:12
C2:
f(i,j)>t,象元数:w2灰度均值:m2均方差:22
组内方差为w2=w112+w222
组间方差为B2=w1(m1-m)2+w2(m2-m)2=w1w2(m1-m2)2
分析:组内方差越小,则组内象素越相似;
组间方差越大,则两组的差别越大。结论:B2/w2的值越大,分割效果越好。措施:改变t的取值,使B2/w2最大所对应的t就是阈值。缺点:它不能反映图像的几何结构,有时判断标准与人的视觉不一致。5)最佳熵自动门限法
基本思想:选择阈值使前景和背景的两个灰度级分布的有效信息为最大。Shannon熵:灰度范围在[0,L–1]的图像,其熵为门限t:目标W、
背景B,[0,t]的分布和[t+1,L–1]的分布为每个分布对应的熵分别为HW(t)和HB(t)
使熵H(t)取最大值的t,即最佳门限
原图(b)熵阈值法(c)otsu法6)最小误差分割
目标:正态分布,密度p1(z),均值μ1方差σ12背景:正态分布,密度p2(z),均值μ2方差σ22目标像点数占总点数的百分比为θ,背景(1-θ)则混合概率密度为当选定门限为t时,目标点错划为背景点的概率把背景点错划为目标点的概率
总错误概率确定t,使误差最小
令若先验概率已知,如2、复杂图像分割以上技术共同不足:大部分方法都是针对二类问题的,在灰度范围内搜索一个最佳门限值。当这类方法推广至多类问题时,需要在全灰度范围内搜索出最佳的门限组合,耗时较多,难于实际应用。相当多的方法不能自动确定类数,需要人为事先确定,显然不合适。有的方法可以通过自动找直方图峰谷去确定类数,实际直方图通常是不平滑的,需要作平滑预处理,但平滑窗口的尺寸常常又是人为设置的,限制了多门限技术的自动化程度。
一般步骤:①自动平滑直方图②确定区域类数平滑方图的峰:初始区域类数,进一步确认③自动搜索多门限值(阈值)简单图像的分割方法、各峰间的最佳门限开始求二维灰度直方图编码初始化群体及参数滤波计算适应值停止准则?选择、杂交、变异模糊划分停止1、什么是区域?什么是图像分割?图像分割按途径可分哪几类?2、何谓阈值分割?分割的依据是什么?3、O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东淄博周村区事业单位综合类岗位招聘工作人员15人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁汶上县事业单位第六批“优才”拟聘历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济南轨道交通集团限公司招聘141人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东泰安市直及功能区事业单位综合类岗位招聘工作人员286人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东机场智慧能源发展限公司招聘7人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东日照市人防资产运营集团限公司招聘9人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东德州市庆云县部分县直机关事业单位选调选聘20人管理单位笔试遴选500模拟题附带答案详解
- 安全方案模板6篇
- 2025年山东威海市环翠区国资本运营限公司公开招聘工作人员(20人)管理单位笔试遴选500模拟题附带答案详解
- 2025年山东大学(威海)博士后研究人员招考管理单位笔试遴选500模拟题附带答案详解
- 报关税费代缴服务合同
- 小学体育新课标培训
- 2024年应急预案知识考试题库及答案(共60题)
- 2024湖南株洲攸县城关国家粮食储备库员工招聘2人历年高频难、易错点500题模拟试题附带答案详解
- DB34∕T 4638-2023 创新型智慧园区建设与管理规范
- 有关于企业的调研报告范文(10篇)
- 重庆市康德卷2025届高一上数学期末检测模拟试题含解析
- 君乐宝在线测评题答案
- 2024版《安全生产法》考试题库附答案(共100题)
- 2024年重庆市高考地理试卷(含答案与解析)
- 教育机构合作伙伴招募方案
评论
0/150
提交评论