




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码53页/总NUMPAGES总页数53页2022-2023学年广东省汕头市中考数学专项提升仿真模拟卷(一模)一、选一选(本大题共10小题,每小题4分,满分40分)1.﹣2017倒数是()A. B.﹣ C.2017 D.﹣20172.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109 B.5.1×108 C.5.1×109 D.51×1073.下列运算正确的是()A.x+y=xy B.2x2﹣x2=1 C.2x•3x=6x D.x2÷x=x4.九(2)班“环保小组”的5位同学在中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为【】A.16,16 B.10,16 C.8,8 D.8,165.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.6.某初中毕业班每一位同学都将自己的照片向全班其他同学各送一张表示留念,全班共送了1035张照片,如果全班有名学生,根据题意可列出方程为()A. B.C. D.7.方程组的解x、y满足x>y,则m的取值范围是()A. B.C. D.8.如图,将半径为的圆折叠后,圆弧恰好圆心,则折痕的长为()A.4cm B.2cm C.cm D.cm9.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=66°,则∠FEG等于()A.47° B.46° C.11.5° D.23°10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:ba2+b+2ab=_____.12.如图,一个圆作滚动运动,它从A位置开始,滚过与它相同其他六个圆的上部,到达B位置.则该圆共滚过_____圈.13.数轴上-1所对应的点为A,将A点右移4个单位再向左平移6个单位,则此时A点距原点的距离为_____14.如图,边长一定正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是_______.三、(本大题共2小题,每小题8分,满分16分)15.计算:16.已知x2+x﹣6=0,求的值.四、解答题(本大题共2小题,每小题8分,满分16分)17.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成对称的图形△A1BC1;(2)以原点O为位似,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.
五、解答题(本大题共2小题,每小题10分,满分20分)19.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.20.如图,函数与反比例函数的图象交于两点,过点作轴,垂足为点,且.(1)求函数与反比例函数的表达式;(2)根据所给条件,请直接写出没有等式的解集;(3)若是反比例函数图象上的两点,且,求实数的取值范围.六、解答题(本大题满分12分)21.某电视台的一档娱乐性节目中,在游戏环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用没有透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.七、解答题(本大题满分12分)22.如图1,△ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB.(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若没有存在,说明理由;(2)若将“点D在线段AB上,点E在线段CB延长线上”改为“点D在线段BA延长线上,点E在线段BC延长线上”,其他条件没有变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.八、(本大题满分14分)23.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个没有同的公共点,试求t的取值范围.2022-2023学年广东省汕头市中考数学专项提升仿真模拟卷(一模)一、选一选(本大题共10小题,每小题4分,满分40分)1.﹣2017的倒数是()A. B.﹣ C.2017 D.﹣2017【正确答案】B【分析】根据乘积为1的两个数互为倒数,可得答案.【详解】根据乘积为1的两数互为倒数,可知-2017的倒数为﹣.故选B.2.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109 B.5.1×108 C.5.1×109 D.51×107【正确答案】B【详解】解:510000000=5.1×108.故选B.3.下列运算正确的是()A.x+y=xy B.2x2﹣x2=1 C.2x•3x=6x D.x2÷x=x【正确答案】D【详解】A、x和y没有是同类项,没有能合并,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项错误;C、2x•3x=6x2,原式计算错误,故本选项错误;D、x2÷x=x,原式计算正确,故本选项正确.故选D.4.九(2)班“环保小组”的5位同学在中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为【】A.16,16 B.10,16 C.8,8 D.8,16【正确答案】D【分析】根据众数和中位数的定义求解.找出次数至多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【详解】解:在这一组数据中16是出现次数至多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是8,那么由中位数的定义可知,这组数据的中位数是8.
故选D.本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数至多的数据叫做众数.5.下列几何体是由4个相同小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【正确答案】C【详解】从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是如下图所示:故选:C.6.某初中毕业班的每一位同学都将自己的照片向全班其他同学各送一张表示留念,全班共送了1035张照片,如果全班有名学生,根据题意可列出方程为()A. B.C. D.【正确答案】B【分析】如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.【详解】解:∵全班有x名同学,
∴每名同学要送出(x-1)张;
又∵是互送照片,
∴总共送的张数应该是x(x-1)=1035.
故选B.本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.7.方程组的解x、y满足x>y,则m的取值范围是()A. B.C. D.【正确答案】D【详解】试题分析:解方程组得,因为x>y,所以>,解得,故选D.考点:1.二元方程组;2.没有等式的解集.8.如图,将半径为的圆折叠后,圆弧恰好圆心,则折痕的长为()A.4cm B.2cm C.cm D.cm【正确答案】A【分析】连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,根据折叠的性质及垂径定理得到AE=BE,再根据勾股定理即可求解.【详解】如图所示,连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,∵折叠后恰好圆心,∴OE=DE,∵半径为4,∴OE=2,∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE==2∴AB=2AE=4故选A.此题主要考查垂径定理,解题的关键是熟知垂径定理的应用.9.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=66°,则∠FEG等于()A.47° B.46° C.11.5° D.23°【正确答案】D【详解】∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,又∵AD=BC,∴GF=GE,∠FGC=∠DAC=20°,∠AGE=∠ACB=66°,∴∠FGE=∠FGC+∠EGC=20°+(180°﹣66°)=134°,∴∠FEG=(180°﹣∠FGE)=23°.故选D.10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B.C. D.【正确答案】A【分析】由勾股定理求出AB、AC的长,进一步求出△ABC的面积,根据移动特点有三种情况(1)(2)(3),分别求出每种情况y与x的关系式,利用关系式的特点(是函数还是二次函数)就能选出答案.【详解】解:已知∠C=90°,BC=2cm,∠A=30°,
∴AB=4,
由勾股定理得:AC=2,
∵四边形DEFG为矩形,∠C=90,
∴DE=GF=2,∠C=∠DEF=90°,
∴AC∥DE,
此题有三种情况:(1)当0<x<2时,AB交DE于H,
如图
∵DE∥AC,
∴,
即,
解得:EH=x,
所以,
∵y是关于x的二次函数,
所以所选答案C错误,答案D错误,
∵>0,开口向上;
(2)当2≤x≤6时,如图,
此时,
(3)当6<x≤8时,如图,设GF交AB于N,设△ABC的面积是s1,△F的面积是s2.
BF=x-6,与(1)类同,同法可求,
∴y=s1-s2,
∴开口向下,
所以答案A正确,答案B错误,
故选:A.本题主要考查了函数,二次函数的性质三角形的面积公式等知识点,解此题的关键是能根据移动规律把问题分成三种情况,并能求出每种情况的y与x的关系式.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:ba2+b+2ab=_____.【正确答案】b(a+1)2【详解】先提公因式,再运用完全平方公式即可.解.故答案为.12.如图,一个圆作滚动运动,它从A位置开始,滚过与它相同的其他六个圆的上部,到达B位置.则该圆共滚过_____圈.【正确答案】详解】如图1所示,当⊙A旋转到⊙A′位置时,∠COD=90°,这个圆已经旋转180°,即⊙A旋转的度数是∠COD的两倍.段和一段圆心角为120度.中间一共是4段圆心角60度的弧,所邓120°×2+60°×4=480°,而480°×2=960°,960°÷360°=(圈)故答案是.13.数轴上-1所对应的点为A,将A点右移4个单位再向左平移6个单位,则此时A点距原点的距离为_____【正确答案】3【详解】根据数轴上点的坐标特点及平移的性质解答即可.解:根据题意:数轴上-1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为-1+4-6=-3,故此时A点距原点的距离为3个单位长度.14.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是_______.【正确答案】①②③④【详解】解:①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ;④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形WB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=+BW=2BW,∵BW:BM=1:,∴故答案为①②③④.本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.三、(本大题共2小题,每小题8分,满分16分)15.计算:【正确答案】1【详解】按实数的混合运算顺序进行计算即可.解:原式=()﹣1•﹣+8×0.125,=,=1.16.已知x2+x﹣6=0,求的值.【正确答案】【详解】先解一元二次方程,再化简求值即可.解:∵x2+x﹣6=0,,∴x=2或x=﹣3;原式=()÷﹣,=•﹣,=﹣,=;当x=2时,原式中分母为零,所以x=2没有符题意舍去;当x=﹣3时,原式=.四、解答题(本大题共2小题,每小题8分,满分16分)17.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.【正确答案】见解析【详解】(1)两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);(2)验证写出的等式左、右两边是否相等即可.解:(1)上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n);(2)∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立.18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成对称的图形△A1BC1;(2)以原点O为位似,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.
【正确答案】(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【分析】利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.【详解】解:(1)△A1BC1如图所示.
(2)△A2B2C2如图所示,点C2的坐标为(-6,4).五、解答题(本大题共2小题,每小题10分,满分20分)19.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.【正确答案】该建筑物的高度为:()米.【详解】试题分析:首先由题意可得,由AE−BE=AB=m米,可得,继而可求得CE的长,又由测角仪的高度是米,即可求得该建筑物的高度.试题解析:由题意得:∵AE−BE=AB=m米,(米),(米),∵DE=n米,(米).∴该建筑物的高度为:米20.如图,函数与反比例函数的图象交于两点,过点作轴,垂足为点,且.(1)求函数与反比例函数的表达式;(2)根据所给条件,请直接写出没有等式的解集;(3)若是反比例函数图象上的两点,且,求实数的取值范围.【正确答案】(1),;(2)或;(3)或【分析】(1)把的坐标代入函数的解析式,得到,再根据以为底的三角形ABC的面积为5求得m和n的值,继而求得函数与反比例函数的表达式;(2)根据的横坐标,图象即可得出答案;(3)分为两种情况:当点P在第三象限和在象限上时,根据坐标和图象即可得出答案.【详解】解:(1)∵点在函数的图象上,∴,∴,∵,而,且,∴,解得:或(舍去),则,由,得,∴函数的表达式为;又将代入,得,∴反比例函数的表达式为;(2)没有等式的解集为或;(3)∵点在反比例函数图象上,且点在第三象限内,∴当点在象限内时,总有,此时,;当点在第三象限内时,要使,,∴满足的的取值范围是或.本题考查了函数与反比例函数的交点问题,用待定系数法求出函数与反比例函数的解析式,函数与反比例函数的图象和性质,三角形的面积等知识点,熟练运用数形的思想、运用性质进行计算是解题的关键,六、解答题(本大题满分12分)21.某电视台的一档娱乐性节目中,在游戏环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用没有透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【正确答案】(1);(2).【分析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是.七、解答题(本大题满分12分)22.如图1,△ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB.(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若没有存在,说明理由;(2)若将“点D在线段AB上,点E在线段CB延长线上”改为“点D在线段BA延长线上,点E在线段BC延长线上”,其他条件没有变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.【正确答案】(1)见解析;(2)6【分析】(1)先证△CBD∽△ABC,再转化比例线段即可得出答案;(2)利用平行线的性质、30度角所对的直角边等于斜边的一半、三角形中位线定理即可得出答案.【详解】解:(1)AC=BF.证明如下:如图1,∵∠ADP=∠ACD+∠A,∠ACB=∠ACD+∠BCD,∠ADP=∠ACB,∴∠BCD=∠A,又∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,①∵FE∥AC,∴,②由①②可得,,∵BE=CD,∴BF=AC;(2)如图2,∵∠ABC=90°,∠BAC=60°,∴∠ACB=30°=∠ADP,∴∠BCD=60°,∠ACD=60°﹣30°=30°,∵PE∥AC,∴∠E=∠ACB=30°,∠CPE=∠ACD=30°,∴CP=CE,∵BE=CD,∴BC=DP,∵∠ABC=90°,∠D=30°,∴BC=CD,∴DP=CD,即P为CD的中点,又∵PF∥AC,∴F是AD的中点,∴FP是△ADC的中位线,∴FP=AC,∵∠ABC=90°,∠ACB=30°,∴AB=AC,∴FP=AB=2,∵DP=CP=BC,CP=CE,∴BC=CE,即C为BE的中点,又∵EF∥AC,∴A为FB中点,∴AC是△BEF的中位线,∴EF=2AC=4AB=8,∴PE=EF﹣FP=8﹣2=6.本题考查了相似三角形的判定与性质及三角形中位线等知识,综合利用所学知识并进行推理判断是解题的关键.八、(本大题满分14分)23.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个没有同的公共点,试求t的取值范围.【正确答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3)2≤t<.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个没有同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+)2-,∴抛物线顶点D的坐标为(-,-);(2)∵直线y=2x+m点M(1,0),∴0=2×1+m,解得m=-2,∴y=2x-2,则,得ax2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=-2,∴N点坐标为(-2,-6),∵a<b,即a<-2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为,∴E(-,-3),∵M(1,0),N(-2,-6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(-2)-1|•|--(-3)|=−−a,(3)当a=-1时,抛物线的解析式为:y=-x2-x+2=-(x+)2+,由,-x2-x+2=-2x,解得:x1=2,x2=-1,∴G(-1,2),∵点G、H关于原点对称,∴H(1,-2),设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,△=1-4(t-2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,∴当线段GH与抛物线有两个没有同的公共点,t的取值范围是2≤t<.本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.2022-2023学年广东省汕头市中考数学专项提升仿真模拟卷(二模)一.选一选(共8小题,满分32分,每小题4分)1.天安门广场是当今世界上城市广场,面积达440000平方米,将440000用科学记数法表示应为()A.44×105 B.4.4×104 C.44×104 D.0.44×1062.如图2的三幅图分别是从没有同方向看图1所示的工件立体图得到的平面图形,(没有考虑尺寸)其中正确的是()A.①② B.①③ C.②③ D.③3.若将代数式中的任意两个字母交换,代数式没有变,则称这个代数式为完全对称式,如就是完全对称式(代数式中换成b,b换成,代数式保持没有变).下列三个代数式:①;②;③.其中是完全对称式的是()A.①② B.①③ C.②③ D.①②③4.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.95.计算的结果是()A.2 B. C. D.16.下列说确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖中,中奖的概率为表示每抽奖50次就有中奖7.现在把一张正方形纸片按如图方式剪去一个半径为40厘米的圆面后得到如图纸片,且该纸片所能剪出的圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为()厘米.(没有计损耗、重叠,结果到1厘米,≈1.41,≈1.73)A.64 B.67 C.70 D.738.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30° B.29° C.28° D.20°二.填空题(共6小题,满分18分,每小题3分)9.的相反数是__________.10.有一系列方程,第1个方程是x+=3,解为x=2;第2个方程是+=5,解为x=6;第3个方程是+=7,解为x=12;…根据规律第10个方程是+=21,解为_____.11.如图,在四边形ABCD中,对角线AC、BD交于点F,AC⊥AB于点A,点E在边CD上,且满足DF•DB=DE•DC,FE=FB,BD平分∠ABE,若AB=6,CF=9,则OE的长为_____.12.若x,y为实数,y=,则4y﹣3x的平方根是____.13.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为______.14.如图,在平面直角坐标系中,点A双曲线y=(x>0)同时点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.三.解答题(共9小题,满分70分)15.情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是,并写出证明过程.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.16.已知下表内的各横行中,从第二个数起的数都比它左边相邻的数大a,各竖列中,从第二个数起的数都比它上边相邻的数大b.(1)求a,b以及表中x的值.(2)直接写出第m行n列所表示的数.(m≥1,n≥1,记表格中x为第3行第1列)1218x30…17.为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(90~100分);B(80~89分);C(60~79分);D(0~59分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题.(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为,请估计这次九年级学生期末数学考试成绩为的学生人数大约有多少?18.服装店10月份以每套500元的进价购进一批羽绒服,当月以标价,额14000元,进入11月份搞促销,每件降价50元,这样额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折,结果全部卖掉,而且这批羽绒服总获利没有少于12700元,问这批羽绒服至少购进多少件?19.正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.20.已知,如图,△ABC中,AB=AC,点D、E、F分别为AB、AC、BC边的中点.求证:DE与AF互相垂直平分.21.已知二次函数图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)没有等式b+2c+8≥0否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.下岗职工王阿姨利用自己的一技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本没有低于1536元,没有高于1552元.(1)问服装厂有哪几种生产?(2)按照(1)中生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐奉送某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种生产的.23.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.求证:DH是圆O切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.2022-2023学年广东省汕头市中考数学专项提升仿真模拟卷(二模)一.选一选(共8小题,满分32分,每小题4分)1.天安门广场是当今世界上的城市广场,面积达440000平方米,将440000用科学记数法表示应为()A.4.4×105 B.4.4×104 C.44×104 D.0.44×106【正确答案】A【详解】对于值大于1的数,用科学记数法可表示为a×10n的形式,故将440000用科学记数法表示应为4.4×105,故选A.2.如图2的三幅图分别是从没有同方向看图1所示的工件立体图得到的平面图形,(没有考虑尺寸)其中正确的是()A.①② B.①③ C.②③ D.③【正确答案】D【详解】从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻中间有界线的长方形,③正确.故选D.3.若将代数式中的任意两个字母交换,代数式没有变,则称这个代数式为完全对称式,如就是完全对称式(代数式中换成b,b换成,代数式保持没有变).下列三个代数式:①;②;③.其中是完全对称式的是()A.①② B.①③ C.②③ D.①②③【正确答案】A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式没有变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式没有变,故ab+bc+ca是完全对称式,
ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a
若只ab对调后b2a+a2c+c2b与原式没有同,只在情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a没有是完全对称式.故此选项错误,所以①②是完全对称式,③没有是故选择:A.本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.4.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.9【正确答案】B【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.5.计算的结果是()A.2 B. C. D.1【正确答案】C【详解】解:原式=故选C.6.下列说确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖中,中奖的概率为表示每抽奖50次就有中奖【正确答案】A【详解】解:A.∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样的方法,故本选项正确;B.∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差没有能确定,故本选项错误;D.某次抽奖中,中奖的概率为表示每抽奖50次可能有中奖,故本选项错误.故选A.7.现在把一张正方形纸片按如图方式剪去一个半径为40厘米的圆面后得到如图纸片,且该纸片所能剪出的圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为()厘米.(没有计损耗、重叠,结果到1厘米,≈1.41,≈1.73)A.64 B.67 C.70 D.73【正确答案】A【详解】分析:设出与小圆的半径,利用扇形的弧长等于圆的周长得到小圆的半径,扇形的半径与小圆半径相加,再加上倍的小圆半径即可得正方形的对角线长,除以就是正方形的边长.详解:设小圆半径为r,则:2πr=,
解得:r=10,
∴正方形的对角线长为:40+10+10×=50+20,
∴正方形的边长为:50+10≈64,
故选A.点睛:本题用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;注意扇形的半径与小圆半径相加,再加上倍的小圆半径即为得正方形的对角线长,对角线除以即为正方形的边长.8.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30° B.29° C.28° D.20°【正确答案】A【详解】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=(180°-40°)÷2=70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.二.填空题(共6小题,满分18分,每小题3分)9.的相反数是__________.【正确答案】-6【分析】根据正负数的意义先化简,然后根据相反数的定义即可得出结论.【详解】解:,6的相反数为-6∴相反数是-6故-6.此题考查的是正负数的意义和求一个数的相反数,掌握正负数的意义和相反数的定义是解决此题的关键.10.有一系列方程,第1个方程是x+=3,解为x=2;第2个方程是+=5,解为x=6;第3个方程是+=7,解为x=12;…根据规律第10个方程是+=21,解为_____.【正确答案】x=110【详解】分析:观察这一系列方程可发现规律,第n个方程为=2n+1,其解为n(n+1),将n=10带入即可得到答案.详解:第1个方程是x+=3,解为x=2×1=2;第2个方程是=5,解为x=2×3=6;第3个方程是=,解为x=3×4=12;…可以发现,第n个方程为=2n+1,解为n(n+1).∴第10个方程=21的解为:x=10×11=110.故答案为x=110.点睛:此题考查了一元方程的解,关键在于通过观察题干中给出的一系列方程,总结归纳出规律,然后用含n的式子表示出来.此题难度适中,属于中档题.11.如图,在四边形ABCD中,对角线AC、BD交于点F,AC⊥AB于点A,点E在边CD上,且满足DF•DB=DE•DC,FE=FB,BD平分∠ABE,若AB=6,CF=9,则OE的长为_____.【正确答案】2【详解】分析:首先证明△BAF∽△CAB,推出AB2=AF•AC,设AF=x,则有36=x(x+9),解得x=3,推出AF=3,BF=EF==3,BC==6,由△EOF∽△COB,推出===,设OF=a,OB=2a,在Rt△ABO中,根据AB2+AO2=OB2,可得36+(3+a)2=4a2,求出a即可解决问题.详解:如图:∵DF•DB=DE•DC,∴=,∵∠EDF=∠BDC,∴△CDF∽△BDE,∴∠2=∠5,∵∠FOB=∠EOC,∴△BOF∽△COE,∴=,∴=,∴△EOF∽△COB,∴∠3=∠4,∵FB=FE,∴∠2=∠4,∵∠1=∠2,∴∠1=∠2=∠3,∵∠BAF=∠CAB,∴△BAF∽△CAB,∴AB2=AF•AC,设AF=x,则有36=x(x+9),解得x=3,∴AF=3,BF=EF==3,BC==6,∵△EOF∽△COB,∴===,设OF=a,OB=2a,在Rt△ABO中,∵AB2+AO2=OB2,∴36+(3+a)2=4a2,解得a=5,∴OF=5,OC=4,∴OE=2.故答案2.点睛:本题考查相似三角形的性质和判定,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考填空题的压轴题.12.若x,y为实数,y=,则4y﹣3x的平方根是____.【正确答案】±【详解】∵与同时成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.13.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为______.【正确答案】2π+4.【详解】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF==,则阴影部分面积=S⊙O+S△HGF=•π•22+××=2π+4.故答案为2π+4.点睛:本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.14.如图,在平面直角坐标系中,点A的双曲线y=(x>0)同时点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.【正确答案】【分析】分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k﹣1)=k,解方程即可.详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=(x>0)点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(负值已舍去),故答案为.点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.【详解】请在此输入详解!三.解答题(共9小题,满分70分)15.情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是,并写出证明过程.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.【正确答案】①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE,详见解析.【分析】情景观察:①由AB=AC,AE⊥BC,AE是公共边,根据“HL”即可判断△ABE≌△ACE;根据等腰三角形“三线合一”和∠A=45°,可求得∠DAF=22.5°,利用等边对等角和三角形内角和定理求得∠B=67.5°,在Rt△BDC中即可求得∠DCB=22.5°,在Rt△ADC中由∠DAC=45°可得AD=CD,由“ASA”即可得出△ADF≌△CDB;②由①中△ADF≌△CDB得出AF=BC,再由“三线合一”得出BC=2CE,等量代换即可得出结论;问题探究:延长AB、CD交于点G,由ASA证明△ADC≌△ADG,得出对应边相等CD=GD,即CG=2CD,证出∠BAE=∠BCG,由ASA证明△ABE≌△CBG,得出AE=CG=2CD即可.【详解】解:①图1中所有的全等三角形为△ABE≌△ACE,△ADF≌△CDB;
故答案为△ABE≌△ACE,△ADF≌△CDB;②线段AF与线段CE数量关系是:AF=2CE;故答案为AF=2CE.证明:∵△BCD≌△FAD,∴AF=BC,∵AB=AC,AE⊥BC,∴BC=2CE,∴AF=2CE;问题探究:证明:延长AB、CD交于点G,如图2所示:∵AD平分∠BAC,∴∠CAD=∠GAD,∵AD⊥CD,∴∠ADC=∠ADG=90°,在△ADC和△ADG中,,∴△ADC≌△ADG(ASA),∴CD=GD,即CG=2CD,∵∠BAC=45°,AB=BC,∴∠ABC=90°,∴∠CBG=90°,∴∠G+∠BCG=90°,∵∠G+∠BAE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,,∴△ABE≌△CBG(ASA),∴AE=CG=2CD.本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解决问题的关键.16.已知下表内的各横行中,从第二个数起的数都比它左边相邻的数大a,各竖列中,从第二个数起的数都比它上边相邻的数大b.(1)求a,b以及表中x的值.(2)直接写出第m行n列所表示的数.(m≥1,n≥1,记表格中x为第3行第1列)1218x30…【正确答案】(1)11;(2)5m+3n﹣7.【详解】分析:(1)根据表内的各横行中,从第二个数起的数都比它左边相邻的数大a得出12+2a=18,解方程求出a的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大b,得出(12+a)+2b=30,解方程求出b的值,进而求得x的值;(2)由题意个数是1,由(1)可知第m行n列所表示的数为1+3(m-1)+5(n-1),即为3m+5n-7.详解:(1)∵各横行中,从第二个数起的数都比它左边相邻的数大a,∴12+2a=18,解得:a=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大b,∴(12+a)+2b=30,将a=3代入上述方程得15+3b=30,解得:b=5.此时x=12﹣2a+b=12﹣6+5=11;(2)由题意个数是1,由(1)可知第m行n列所表示的数为1+5(m﹣1)+3(n﹣1),即为5m+3n﹣7.点睛:本题考查了一元方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(90~100分);B(80~89分);C(60~79分);D(0~59分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题.(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为,请估计这次九年级学生期末数学考试成绩为的学生人数大约有多少?【正确答案】(1)40人;(2)补图见解析;(3)480人.【分析】(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.【详解】解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××=480(人),这次九年级学生期末数学考试成绩为的学生人数大约有480人.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从没有同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.服装店10月份以每套500元的进价购进一批羽绒服,当月以标价,额14000元,进入11月份搞促销,每件降价50元,这样额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折,结果全部卖掉,而且这批羽绒服总获利没有少于12700元,问这批羽绒服至少购进多少件?【正确答案】(1)每件羽绒服的标价为700元;(2)这批羽绒服至少购进120件.【分析】(1)设每件羽绒服的标价为x元,则10月份售出件,等量关系:11月份的量是10月份的1.5倍;(2)设这批羽绒服购进a件,没有等量关系:羽绒服总获利没有少于12700元.【详解】(1)设每件羽绒服的标价为x元,则10月份售出件,根据题意得:,解得:x=700,经检验x=700是原方程的解.答:每件羽绒服的标价为700元.(2)设这批羽绒服购进a件,10月份售出14000÷700=20(件),11月份售出20×1.5=30(件),根据题意得:14000+(5500+14000)+700×0.8(a﹣20﹣30)﹣500a≥12700,解得:a≥120,所以a至少120,答:这批羽绒服至少购进120件.本题考查了分式方程的应用和一元没有等式的应用.分析题意,找到合适的数量关系是解决问题的关键.19.正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.【正确答案】(1)见解析;(2).【详解】解:(1)解法一:用列表法12345612345672345678345678945678910解法二:树状图法(2)20.已知,如图,△ABC中,AB=AC,点D、E、F分别为AB、AC、BC边的中点.求证:DE与AF互相垂直平分.【正确答案】见解析【详解】分析:首先连接DF,EF,由△ABC中,AB=AC,点D、E、F分别为AB、AC、BC边的中点,根据三角形的中位线的性质,易证得AD=DF=EF=AE,继而证得四边形ADFE是菱形,则可证得结论.详解:连接DF,EF,∵点D、E、F分别为AB、AC、BC边的中点,∴DF=AE=AC,EF=AD=AB,∵AB=AC,∴AD=DF=EF=AE,∴四边形ADFE是菱形,∴DE与AF互相垂直平分.点睛:此题考查了菱形的判定与性质以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.21.已知二次函数图象的顶点坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管桩买卖合同范本2025年
- 2025年教师资格之中学生物学科知识与教学能力模拟题库及答案下载
- 2020-2025年中级银行从业资格之中级银行管理综合练习试卷A卷附答案
- 医疗与医药行业:2025年生物制药市场趋势洞察报告
- 学前教育信息化2025年政策环境与市场机遇研究报告
- 二零二五版抗静电打地坪工程合作合同
- 二零二五年度对外承包工程借款合同范本:工程款支付与成本控制措施
- 二零二五年度中小企业融资合同范本
- 2025版房屋买卖交易背景调查及风险评估服务合同
- 2025年度苗木电商平台合作销售合同范本
- 2025年基本乐理试题册及答案
- 船体加工与装配 《天圆地方放样展开》实训指导书
- 2025年简单书面离婚协议书
- 2025全科医师转岗培训理论必刷题库(含答案)
- 2025届浙江省杭州市萧山三中物理高二下期末考试模拟试题含解析
- 陪诊师培训课件
- NB/T 11431-2023土地整治煤矸石回填技术规范
- 火力发电厂常见职业病危害的预防控制.ppt
- 41、高速铁路吸上线检修作业指导书
- 《水文频率计算》ppt课件
- 教师个人基本信息表
评论
0/150
提交评论