版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人人都能获得良好的数学教育不同的人在数学上得到不同的发展——数学课程标准修订的主要内容武昌区教研培训中心刘欣认识数学----什么是数学?原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程新课标:数学是研究数量关系和空间形式的科学
体现数学课程核心理念的三句话:人人学有价值的数学人人都能获得必需的数学不同的人在数学上得到不同的发展人人都能获得良好的数学教育不同的人在数学上得到不同的发展
数学课标修订的主要方面:
1.关于基本理念2.关于设计思路3.关于课程目标4.关于课程内容5.关于课程实施
1.关于基本理念的修改(在前言中增加了课程性质的描述、修改、丰富了基本理念的一些提法)《前言》增加了对数学课程性质的表述数学课程的性质表述为,“义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。义务教育阶段的数学课程能为学生未来生活、工作和学习奠定重要的基础。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面得到发展。”义务教育阶段数学课程本质属性事实上,义务教育阶段数学课程这些本应被“突出体现”的属性有被弱化(或“异化”)的倾向。在相当大范围,义务教育阶段的数学课程从一开始就被导入应试升学的轨道,“突出体现”的就是竞争性、区分性和筛选性,这给学生发展带来诸多不利影响。因此,《标准》对义务教育阶段数学课程本质属性的强调颇有“正本清源”之意。什么是课程的基本理念?基本理念反映出我们对数学、数学课程、数学教学以及评价等方面应具有的基本认识和观念、态度,它是制定和实施数学课程的指导思想。《标准》中的每一部份内容都要贯穿基本理念的思想和要求。同时,教师作为课程的实施者,更应自觉树立起正确的数学观、数学课程观、数学教学观、评价观等数学教育观念,并用以指导自己的教学实践活动。
关于基本理念的修改原课标:
数学课程数学数学学习数学教学评价信息技术修改后:
数学课程课程内容
教学活动学习评价信息技术我们需要什么样的数学教学?教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学活动的本质是什么?什么是数学课堂教学中最需要做的事?数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
原课标:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”
学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。原课标:教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。原课标:“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”
应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。如何看待信息技术的运用?数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式2.关于设计思路的修改学段划分保持不变对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词对四个学习领域的名称作适当调整对课程内容中的若干核心概念作适当调整,对其意义作更明确的阐释核心概念课程目标的行为动词及水平:《标准》使用“了解、理解、掌握、运用”等术语表述学习活动结果目标的不同水平,使用“经历、体验、探索”等术语表述学习活动过程目标的不同程度。这些词的基本含义如下。了解:从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。掌握:在理解的基础上,把对象用于新的情境。运用:综合使用已掌握的对象,选择或创造适当的方法解决问题。经历:在特定的数学活动中,获得一些感性认识。体验:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。探索:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。
在标准中,使用了一些词,表述与上述术语同等水平的要求程度。这些词与上述术语之间的关系如下:(1)了解,同类词:知道,初步认识(2)理解,同类词:认识,会(3)掌握,同类词:能(4)运用,同类词:证明(5)经历,同类词:感受、尝试(6)体验,同类词:体会对四个学习领域名称的修改:
——总称呼改为课程内容的四个部分原课标:数与代数空间与图形统计与概率实践与综合应用修改后:数与代数图形与几何统计与概率综合与实践关于10个核心概念的分析
——原课标也称为“关键词”原课标:数感符号感空间观念(6个)统计观念应用意识推理能力修改后:数感符号意识运算能力(10个)模型思想空间观念几何直观推理能力数据分析观念应用意识创新意识核心概念有何意义?
首先,《标准》将这些核心概念放在课程内容设计栏目下提出,是想表明,这些概念不是设计者超乎于数学课程内容之上外加的,而是实实在在蕴涵于具体的课程内容之中的。从这一意义上看,核心概念往往是一类课程内容的核心或主线,它有利于我们体会内容的本质,把握课程内容的线索,抓住教学中的关键。第二,这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,仅以“数学思考”和“问题解决”部分的目标设定来看,《标准》就提出了:“建立数感、符号意识和空间观念,初步形成几何直观和运算能力”;“发展数据分析观念,感受随机现象”;“发展合情推理和演绎推理能力”;“增强应用意识,提高实践能力”;“体验解决问题方法的多样性,发展创新意识”。这些目标表述几乎涵盖了所有的核心概念。第三,深入一步讲,很多核心概念都体现着数学的基本思想。数学基本思想集中反映为数学抽象、数学推理和数学模型思想。比如,与“数与代数”部分内容直接关联的数感、符号意识、运算能力、推理能力和模型思想等核心概念就不同程度的直接体现了抽象、推理和模型的基本思想要求。这启示我们,核心概念的教学要更关注其数学思想本质。第四,从这10个名词的指称来看,它们体现的都是学习主体——学生的特征,涉及的是学生在数学学习中应该建立和培养的关于数学的感悟、观念、意识、思想、能力等,因此,可以认为,它们是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面。所以,把握好这些核心概念无论对于教师教学和学生学习都是极为重要的。核心概念一:数感
修订后《标准》关于数感的提法是:“数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。”存在数感吗?(1)两个实例给人的启示:实例一:2010年2月25日,国家统计局公布的《2009年国民经济和社会发展统计公报》显示:我国70个大中城市房屋销售价格同比上涨1.5%,其中新建住宅价格上涨1.3%。此报告一出立刻引起全国一片哗然。公众普遍反映此数据与实际状况严重不符。实例二:一老师在教学指数幂的意义时,抛出一个现实情境问题:将一张纸对折32次,它的厚度有多大呢?老师给出的结论使学生在感到惊讶之余,更表示出强烈的质疑。该问题的结论是:其厚度可以超过世界最高峰珠穆朗玛峰的高度。此例就其实质看,教师在这里利用的是,学生基于实际操作(将纸对折若干次)所建立起来的2
的直观感觉与数学科学计算得出的结果之间的巨大反差,由此创设出一个生动的极富吸引力的学习环境这一实例说明,学生在学习数学概念时,其固有的数感不仅在起作用,而且老师若能适时地利用学生原有数感的特点,使其形成课堂教学中的认知冲突,则能大大提高课堂教学的效率。32(2)何为数感?关于数感(NumberSense),在原标准中未作内涵解释,只从外延上指出它所包括的内容。经过这么多年的课改实践,研究者对数感在理论上有了一些探讨,第一线教师在课堂教学实践中也对培养学生的数感做了许多有益的尝试。此次修订,认真听取了各方意见,吸纳了前期实验研究的一些成果,重新对数感的内涵及功能作了表述。
修订后《标准》关于数感的提法《标准》的提法是:“数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。”将数感表述为“感悟”原来,对数感内涵的认识较多强调其直觉、感知、潜意识、经验等方面,在教学中常常感到“虚”,找不到教学支点。
将数感表述为“感悟”不仅使这一概念有了较为明晰的界定,也使得这一概念有了更实在的意义,有利于一线教师的理解和把握。它揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。感悟是既通过肢体又通过大脑,因此,既有感知的成分又有思维的成分《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计,这主要是基于义务教育阶段数学课程内容的范围并根据学生的实际所作出的要求,这有利于教师在教学中更好地把握数感培养的几条主线。紧密结合现实生活
情境和实例,培养学生的数感
现实生活情境和实例,与学生的实际生活经验密切相连,不仅能够为学生提供真实自然的数的感悟环境,也能让学生在数的认知上经历由具体到抽象的过程,逐步发展学生关于数的思维。反之,学生数感的提升也使得他们能用数字的眼光看周围世界,正如《标准》所说:“建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。”
核心概念二:符号意识
(1)何为符号意识?所谓符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代号。数字、字母、图形、关系式等等构成了数学的符号系统符号意识(Symbolsense)是学习者在感知、认识、运用数学符号方面所作出的一种主动性反应,它也是一种积极的心理倾向。(2)符号意识的含义《标准》对符号意识的表述有这样几层意思值得我们体会:其一,能够理解并且运用符号表示数、数量关系和变化规律。即对数学符号不仅要“懂”,还要会“用”符号“操作”其二,知道使用符号可以进行运算和推理,得到的结论具有一般性。这一要求的核心是基于运算和推理的符号“操作”意识。这涉及到的类型较多,如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等等符号表达与符号思考其三,使学生理解符号的使用是数学表达和进行数学思考的重要形式。这又引出了两个除符号理解和操作之外的要求,即符号的表达与思考。概括起来,符号意识的要求就具体体现于符号理解、符号操作、符号表达、符号思考四个维度。发展符号意识最重要的是运用符号进行数学思考,我们不妨把这种思考称为“符号思考”例:“房间里有4条腿的椅子和三条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60个,那么有几个椅子和几个凳子?”
如果学生没有经过专门的“鸡兔同笼”解题模式的思维训练,他完全可以使用恰当的符号进行数学思考,找到解题思路。如可以用表格分析椅子数的变化引起凳子数和腿总数的变化规律,直接得到答案;也可采用一元一次方程或二元一次方程组的、关于字母的思考方式来加以解决。核心概念三:空间观念
(1)空间观念的含义空间观念是指对物体及其几何图形的形状、大小、位置关系及其变化建立起来的一种感知和认识,空间想象是建立空间观念的重要途径空间观念也是创新精神所需的基本要素,没有空间观念和空间想象力,几乎很难谈发明与创造
(2)《标准》中空间观念所提出的要求《标准》从四个方面提出了要求:根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。核心概念四:几何直观
——此次新增的核心概念(1)对几何直观的认识顾名思义,几何直观所指有两点:一是几何,在这里几何是指图形;一是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来几何直观就是依托、利用图形进行数学的思考、想象。它在本质上是一种通过图形所展开的想象能力。希尔伯特(Hilbert)在其名著《直观几何》一书中指出,图形可以帮助我们发现、描述研究的问题;可以帮助我们寻求解决问题的思路;可以帮助我们理解和记忆得到的结果。几何直观在研究、学习数学中的价值由此可见一般。(2)《标准》中几何直观的含义
《标准》指出:“几何直观是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”它表明:今后数学课程中有两件事需要刻意去做,即针对较抽象的数学对象的“图形表示”和“图形分析”。前者指教学中要培养学生通过画图来表达数学问题的习惯,能画图时尽量画;后者指引导学生借助图形将相对抽象的、复杂的数学关系直观、清晰地展示出来,通过对图形的分析思考进而寻求解决问题的思路。(3)几何直观的培养使学生养成画图习惯,鼓励用图形表达问题可以通过多种途径和方式使学生真正体会到画图对理解概念、寻求解题思路上带来的便利。在教学中应有这样的导向:能画图时尽量画,其实质是将相对抽象的思考对象“图形化”,尽量把问题、计算、证明等数学的过程变得直观重视变换——让图形动起来
几何变换或图形的运动既是学习的对象,也是认识数学的思想和方法。在数学中,我们接触的最基本的图形都是对称图形,例如圆、正多边形、长方体、长方形、菱形、平行四边形等;另一方面,在认识、学习、研究非对称图形时,又往往是运用这些对称图形为工具的。变换又可以看作运动,让图形动起来是指再认识这些图形时,在头脑中让图形动起来,例如,平行四边形是一个中心对称图形,可以把它看作一个刚体,通过围绕中心(两条对角线的交点)旋转180度,去认识、理解、记忆平行四边形的其他性质。充分地利用变换去认识、理解几何图形是建立几何直观的好办法。
学会从“数”与“形”两个角度认识数学
数形结合首先是对知识、技能的贯通式认识和理解。以后逐渐发展成一种对数与形之间的化归与转化的意识,这种对数学的认识和运用的能力,应该是形成正确的数学态度所必需要求的。
用“图形法”解决问题掌握、运用一些基本图形解决问题把让学生掌握一些重要的图形作为教学任务,贯穿在义务教育阶段数学教学、学习的始终。例如,除了前面指出的图形,还有数轴,方格纸,直角坐标系等等。在教学中要有意识地强化对基本图形的运用,不断地运用这些基本图形去发现、描述问题,理解、记忆结果,这应该成为教学中关注的目标。核心概念五:数据分析观念
——由统计观念改为数据分析观念
原课标中的“统计观念”,强调的是从统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑等要求。此次将其改为“数据分析观念”,就是希望改变过去这一概念含义较“泛”,体现统计与概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于“数据分析”。
(1)数据分析观念的含义
数据分析观念是学生在有关数据的活动过程中建立起来的对数据的某种“领悟”、由数据去作出推测的意识、以及对于其独特的思维方法和应用价值的体会和认识。一是过程性(或活动性)要求:让学生经历调查研究,收集、处理数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息二是方法性要求:了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的数据分析方法三是体验性要求:通过数据分析体验随机性(2)数据分析观念的要求:核心概念六:运算能力
——此次增加的核心概念
运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很大的比重。学生在学习数学的过程中,要花费较多的时间和精力,学习和掌握关于各种运算的知识及技能,并发展运算能力。(1)标准对运算能力的要求《标准》指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。(2)对运算能力的认识运算的正确、有据、合理、简洁是运算能力的主要特征。运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简洁。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。核心概念七:推理能力
此次《标准》提出的推理能力与过去相比,有这样一些特点:一是进一步指明了推理在数学学习中的重要意义。《标准》指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式”。它对教学的启示是,不仅要引导学生认识到推理是数学的重要基础之一,它与人们的生活息息相关,更重要的是要逐步培养学生运用推理进行思维的方式。突出了合情推理与演绎推理二是基于数学推理的特点,突出了合情推理与演绎推理这条主线。指出在数学思维和问题解决的过程中,两种推理功能不同,相辅相成——合情推理用于探索思路,发现结论;演绎推理用于证明结论。
引导学生多经历“猜想——证明”的问题探索过程
三是强调推理能力的培养“应贯穿于整个数学学习过程中”。
其一,它应贯穿于整个数学课程的各个学习内容,其二,它应贯穿于数学课堂教学的各种活动过程其三,它应贯穿于整个数学学习的环节也应贯穿于三个学段,合理安排,循序渐进,协调发展使学生多经历
“猜想——证明”的问题探索过程
在“猜想——证明”的问题探索过程中,学生能亲身经历用合情推理发现结论、用演绎推理证明结论的完整推理过程,在过程中感悟数学基本思想,积累数学活动经验,这对于学生数学素养的提升极为有利。教师要善于对素材进行此类加工,引导学生多经历这样的活动。核心概念八:模型思想在义务教育阶段提出模型思想主要有如下理由:第一,模型思想是一种基本的数学思想;第二,模型思想及相应的建模活动与很多课程目标点密切相关(如数感、符号意识、几何直观、发现、提出问题能力、数学的联系、数学应用意识、改善数学学习方式等等),提出模型思想能很好地支撑这些课程目标的实现;
第三,模型思想本身就渗透于各课程内容领域之中,突出模型思想有利于更好理解、掌握所学内容;第四,培养学生的模型思想对义务教育阶段学生来说是可行的。此外还要看到,数学建模已是高中数学课程的学习内容,提出模型思想亦能更好与高中课程衔接。对数学建模的认识所谓数学模型,就是根据特定的研究目的和问题,采用形式化的数学语言,去抽象地,概括地表征所研究对象的主要特征、关系所形成的一种数学结构。在义务教育阶段数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。数学建模就是通过建立模型的方法来求得问题解决的数学活动过程。这一过程的步骤可用如下框图来体现:观察实际情境发现提出问题抽象成数学模型得到数学结果可用结果检验合乎实际不合乎实际修改
这些步骤反映的是一个相对严格的数学建模过程,义务教育阶段特别是小学的数学建模视具体课程内容要求,不一定完全经历所有的环节,这里有一个逐步提高的过程。
《标准》中模型思想的含义及要求模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。使学生体会和理解数学与外部世界的联系是这一核心概念的本质要求《标准》从义务教育数学课程的实际情况出发,将这一过程进一步简化为这样三个环节:首先是“从现实生活或具体情境中抽象数学问题”。这说明发现和提出问题是数学建模的起点。然后“用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律”。在这一步中,学生要通过观察、分析、抽象、概括、选择、判断等等数学活动,完成模式抽象,得到模型。这是建模最重要的一个环节。最后,通过模型去求出结果,并用此结果去解释、讨论它在现实问题中的意义。模型思想的培养在三学段,主要是结合相关概念学习,引导学生运用函数、不等式、方程、方程组、几何图形、统计表格等分析表达现实问题,解决现实问题。模型思想的渗透是多方位的。模型思想的感悟应该蕴含于日常教学之中,使学生经历“问题情境——建立模型
——求解验证”的数学活动过程
“问题情境——建立模型——求解验证”的数学活动过程体现了《标准》中模型思想的基本要求,也有利于学生在过程中理解、掌握有关知识、技能,积累数学活动经验,感悟模型思想的本质。这一过程更有利于学生去发现、提出、分析、解决问题,培养创新意识。方程与模型实际情境数学问题已知量、未知量、等量关系方程(模型)方程的解分析抽象解释解的合理性合乎实际求出列出不合乎实际验证核心概念九:应用意识应用意识有两个方面的含义:一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题——数学知识现实化另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
——现实问题数学化核心概念十:创新意识创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。从基础、核心、方法三个方面指明了创新意识的要素。这为我们培养学生创新意识提出了几个基本的切入点和路径,使创新意识的培养落在了比较实在的载体上,即围绕这三个要素,教师应紧紧抓住“数学问题”、“学会思考”、“猜想、验证”这几个点,做足教学中的“文章”,创新意识培养的目标就有可能得到落实。3.关于课程目标的修改
在目标的结构上仍按:总体目标总体表述知识技能数学思考问题解决情感态度学段目标第一学段第二学段第三学段(1)目标上有哪些变化?
在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。
变化之一:明确提出四基,即“基础知识、基本技能、基本活动经验、基本思想”变化之二:针对创新精神和实践能力的培养,明确提出“发现问题和提出问题的能力、分析问题和解决问题的能力”变化之三:针对了解知识的来龙去脉,明确提出“体会数学知识之间、数学与其他学科之间、数学与生活之间的联系”变化之四:对于情感态度的培养,进一步明确“了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯”变化之五:针对学科精神的培养,明确提出“具有初步的创新意识和科学态度”数学课程总目标有那些新变化?(2)对几个新目标点的分析目标点一:“四基”从“双基”到“四基”
——对数学教学有何意义?何为数学基本思想?德国诺贝尔奖获得者、物理学家冯.劳厄:
“教育无非是一切已学过的东西都忘掉时所剩下的东西”数学课堂教学应该是有思想的教学!有了思想才有了课堂的生命何为数学基本思想?数学基本思想是指对数学及其对象、数学概念和数学结构以及数学方法的本质性认识数学思想蕴涵在数学知识形成、发展和应用的过程中;它制约着学科发展的主线和逻辑架构;是数学知识和方法在更高层次上的抽象与概括。如归纳、演绎、抽象、转化、分类、模型、结构、数形结合、随机…等。如何理解?三个常用的概念:
数学思想数学方法数学思想方法注意教材中蕴含的数学基本思想在课程内容和教材中,数学基本思想其实是很丰富的,这些思想常常处于潜形态,教师要成为有心人
如何使数学思想从潜形态转变为显形态呢?
※分类
※化归
※归纳
什么是数学活动经验?
数学活动经验的基本特征:数学活动经验是基于学习主体的,它带有明显的主体性特征,因此也就具有学习者的个性特征,它属于特定的学习者自己。
—主体性数学活动经验是学习者在学习的活动过程中所获得的,离开了活动过程这一实践是不会形成有意义的数学活动经验的
—实践(过程)性数学活动经验反映的是学习者在特定的学习环境中或某一学习阶段对学习对象的一种经验性认识,这种经验性认识更多的时候是内隐的,原生的或直接感受的、非严格理性的,也是可在学习过程中可变的。
—发展性即使是外部条件看来相同,但是对同一对象,每一个学生仍然可能具有不同的经验
——多样性数学活动经验的类型:直接的活动经验,间接的活动经验,设计的活动经验和思考的活动经验。直接的活动经验是与学生日常生活直接联系的数学活动中所获得的经验,如购买物品、校园设计等。而间接的活动经验是学生在教师创设的情景、构建的模型中所获得的数学经验,如鸡兔同笼、顺水行舟等。设计的活动经验是学生从教师特意设计的数学活动中所获得的经验,如随机摸球、地面拼图等。思考的活动经验是通过分析、归纳等思考获得的数学经验,如预测结果、探究成因等。数学活动经验并不仅仅是解题的经验,
更加重要的是在数学活动中思考的经验提出数学活动经验,还有一个重要目的,就是培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果,因为进行创造,获得新结果的主要途径是作出猜想。数学活动经验并不仅仅是解题的经验,更加重要的是思维的经验,是在数学活动中思考的经验。数学基本活动经验:学习主体通过亲身经历数学活动过程所获得的具有个性特征的经验。“四基”是客观性知识与主观性体验的结合是结果性知识与过程性活动的结合
经验,在哲学上指人们在同客观事物直接接触的过程中通过感觉器官获得的关于客观事物的现象和外部联系的认识。“四基”与数学素养掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验
——发展学生的数学素养,培养学生的创新精神和实践能力目标点二:为何要强调
发现问题、提出问题?在数学中,发现结论常常比证明结论更重要创新性的成果往往始于问题传统教学在这方面的不足问题解决的全过程是发现、提出、分析、解决问题的过程“发现问题和提出问题”所谓“发现问题”,是经过多方面、多角度的数学思维,从表面上看来没有关系的一些现象中找到数量或者空间方面的某些联系,或者找到数量或者空间方面的某些矛盾,并把这些联系或者矛盾提炼出来。所谓“提出问题”,是在已经发现问题的基础上,把找到的联系或者矛盾用数学语言、数学符号集中地以“问题”的形态表述出来发现、提出、分析、解决针对的是问题解决的全程,是数学能力要求发现问题、提出问题是创新的基础诺贝尔奖金获得者李政道教授认为“我们学习知识,目的是要做到‘学问’。学习,就是学习问问题,学习怎样问问题。”教师要善于将陈述性知识的教材进行二度设计转换成一系列问题序列,使教学成为问题解决的活动过程教师更要善于创设问题情境,引导学生自己去发现、提出、分析解决问题目标点三:增强数学的联系这里说到学生要体会三个方面的联系:数学知识之间的联系(系统性、综合性)数学与其他学科之间的联系(相关性、工具性)数学与生活之间的联系(应用性)目标点四:数学学习习惯第一次提出“培养学生良好的数学学习习惯”《标准》在“情感与态度”目标中具体指明了其含义:
“养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。”什么是学习习惯?
为什么要提出培养学习习惯?学习习惯指在长期的学习中逐渐养成的、较稳固的学习行为、倾向和习性。之所以提出数学学习习惯,一是因为在长达九年的义务教育学习阶段,一个人在学习上的习惯总是处于不断的养成过程中,它是与学习行为相伴而行的,客观存在的。
在日常教学中刻意诱导,潜移默化,点滴
积累,通过长时间的磨练,方能习以为常。
二是良好的数学学习习惯具有很强的心理内驱力和学习目标达成的惯性力,它有利于学生通过自主学习形成学习的正向迁移,提高学习效率三是良好的数学学习习惯能帮助学生逐步实现由“学会”到“会学”的转变,使学生今后在适应终身学习上受益。4.关于内容标准的修改将“内容标准”的提法改为“课程内容”课程内容中的条目数量统计(三学段)
原标准修订标准差数与代数
4852(3)+4(3)图形与几何
8389(4)+6(4)统计与概率
1311-2综合与实践
43-1合计
148155(7)+7(7)三学段关于课程内容的修改数与代数:增加了:知道|a|的含义(这里a表示有理数)知道最简二次根式和最简分式的概念能进行简单的整式乘法运算中增加了一次式与二次式相乘会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等会用待定系数法确定一次函数的解析表达式数与代数:增加了:*了解一元二次方程根与系数关系*能解简单的三元一次方程组*知道给定不共线三点的坐标可以确定一个二次函数删除的内容:能对含有较大数字的信息作出合理的解释与推断了解有效数字的概念能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题求绝对值时关于“绝对值符号内不含字母”的限制。
图形与几何(三学段):内容结构上略有调整(图形的性质、图形的运动、图形与坐标)(原来是图形的认识、图形与变换、图形与坐标、图形与证明)对基本事实规定更清晰(9条),不再使用“公理”这个词增强了“图形与几何”内容的条理性,进一步阐述了合情推理和演绎推理的关系,强调了几何证明表述方式的多样性增加了:会比较线段的长短,理解线段的和、差,以及线段中点的意义了解平行于同一条直线的两条直线平行会按照边长的关系和角的大小对三角形进行分类了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多边形与圆的关系尺规作图:过一点作已知直线的垂线已知一直角边和斜边作直角三角形作三角形的外接圆、内切圆作圆的内接正方形和正六边形*了解平行线性质定理的证明;*了解相似三角形判定定理的证明;*探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧;*探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等;*了解圆周角及其推论的证明;例
证明两直线平行,同位角相等。这个证明可以利用反证法完成。如图15所示,我们希望证明:如果AB∥CD,那么∠1=∠2。假设∠1≠∠2,过点O作直线A′B′,使∠EOB′=∠2。根据“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”这个基本事实,可得A′B′∥CD。这样,过点O就有两条直线AB,A′B′平行于CD,这与基本事实“过直线外一点有且只有一条直线与这条直线平行”矛盾,说明∠1≠∠2的假设是不对的,于是有∠1=∠2。*了解平行线性质定理的证明基本事实1:两点确定一条直线。基本事实2:两点之间线段最短。基本事实3:过一点有且只有一条直线与这条直线垂直。基本事实4:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。基本事实5:过直线外一点有且只有一条直线与这条直线平行。基本事实6:两边及其夹角分别相等的两个三角形全等。基本事实7:两角及其夹边分别相等的两个三角形全等。基本事实8:三边分别相等的两个三角形全等。基本事实9:两条直线被一组平行线所截,所得的对应线段成比例。基本事实9条删去了:删去了有关等腰梯形的内容删去了“探索并了解两圆位置关系”降低了关于视图与投影的要求,删去关于影子、视点、视角、盲区等内容以及对雪花曲线和莫比乌斯带等图形的欣赏删去关于镜面对称的要求统计与概率:
较为系统地整理了“统计与概率”,减少了概率的部分内容,使得三个学段的层次更加清晰,表达更加准确。
统计内容主要变化如下:
第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。
加强体会数据的随机性这是修改后的一个重要变化。原来,学生主要是依靠概率来体会随机思想的,现在希望学生通过数据来体会随机思想。这种变化从“数据分析观念”核心词的表述可以看出。
第三学段,删去极差、频数折线图等内容,强调了对“随机”的体会。比如,增加了“通过案例了解简单随机抽样”、“通过表格、折线图等,了解随机现象的变化趋势”、增加了能用计算器处理较为复杂的数据、理解平均数的意义,能计算中位数、众数.强调培养学生的数据分析观念,加强体会数据的随机性。概率部分:(1)在第一学段,去掉了该内容的要求;第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。(2)第三学段,通过列出简单随机现象所有可能的结果,以及指定事件发生的所有结果,来了解随机现象发生的概率。统计与概率未采纳的意见:主要是希望在第二学段保留“中位数、众数”,在第三学段增加“标准差”。考虑到义务教育阶段统计学习核心是发展数据分析观念,对于分析数据特征,关键是让学生认识到可以刻画数据的集中趋势和离中程度,而不在于学习过多的概念,所以没有采纳此建议。“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径综合与实践
统一了三个学段的名称,进一步明确了其目的和内涵学生针对问题情境,综合所学知识及生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解5.实施建议的修改
实施建议的修改。将原来的按三个学段分别表述改为整体表述,避免不必要的重复,并增强了可操作性。为了使教材编写者和广大教师能够更好地理解《标准》的理念,明确教学的过程与方法,增补一些具有针对性的案例,并且对于案例的教学功能等进行了比较详细地阐述。
术语解释与案例术语解释与案例汇总作为附录,统一放在正文后面,使正文更加简捷清晰;
增加了一些帮助教师理解、澄清困惑的案例。案例数达到82个。对大部分案例不仅仅呈现了案例要求本身,而且提出了案例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。修订原则:关注数学的科学性、教学的合理性,两者兼顾.教材体系保持相对稳定,适当调整,考虑使用教材的惯性
.附:教科书体系的修订1.数与代数方程函数一元一次方程(七上)二元一次方程组(七下)一次函数(八下)一元二次方程(九上)二次函数(九上)反比例函数(九下)
一次函数后移,使学生学习函数的难点移后。二次函数提前,加强与一元二次方程的联系。反比例函数移后,便于学生理解涉及的一些物理等相关知识。代数式方程、函数整式的加减(七上)一元一次方程(七上)二元一次方程组(七下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度美发店市场营销合同
- 药渣购销合同范本
- 北京工业大学耿丹学院《建筑设计》2022-2023学年第一学期期末试卷
- 2024年度货物买卖合同标的及付款方式
- 北京工业大学《军事训练》2023-2024学年第一学期期末试卷
- 2024年度知识产权许可合同:专利持有方与使用方之间的许可协议
- 北京工业大学《复变函数与积分变换》2022-2023学年第一学期期末试卷
- 二零二四年度资产收购合同:房地产资产收购协议
- 北京城市学院《概率论与数理统计》2021-2022学年第一学期期末试卷
- 大连单位食堂2024年度承包合同续签协议
- 银行保险从业人员销售服务初级培训考试题库
- 智慧学校(智慧教育)智慧校园创建工作汇报-强管理、重应用、促提升
- 多路温度采集系统设计与实现
- 泥浆材料及处理剂大全
- 临床基因扩增检验操作规范
- PS+6000+综合自动化系统教学
- 《空气能占据空间吗》教学反思
- 标准化沟通在临床护理中的应用PPT幻灯片课件
- 苏教版四年级上册小学数学《简单的周期》课件(公开课)
- 生活垃圾分类(课件)小学生垃圾分类主题班会
- 临床药师工作考核制度
评论
0/150
提交评论