




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市张鲁中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果a<0,-1<b<0,那么下列不等式成立的是(
)A.a>ab>a
B.
ab>a>a
C.ab>a>a
D.a>ab>a参考答案:B2.已知函数,则函数f(x)的图象在处的切线的斜率为(
)A.-21 B.-27 C.-24 D.-25参考答案:A【分析】由导数的运算可得:,再由导数的几何意义,即函数的图象在处的切线的斜率为,求解即可.【详解】由题得,所以,解得,所以.故选A【点睛】本题考查了导数的运算及导数的几何意义,属基础题.3.不等式组的解集是
(
)
A.
B.
C.
D.参考答案:C略4.已知椭圆(a>b>0)的半焦距为c(c>0),左焦点为F,右顶点为A,抛物线与椭圆交于B、C两点,若四边形ABFC是菱形,则椭圆的离心率是A.
B.
C.
D.参考答案:D略5.两个正数a、b的等差中项是,一个等比中项是,且则双曲线的离心率e等于(
)A. B. C. D.参考答案:D6.已知复数,则的值为(
)A.
B.1
C.
D.参考答案:B7.如图,已知双曲线=1(a>0,b>0)上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=α,且α∈[,],则双曲线离心率e的取值范围为()A.[,2+] B.[,] C.[,] D.[,+1]参考答案:B【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用S△ABF=2S△AOF,先求出e2=,再根据α∈[,],即可求出双曲线离心率的取值范围.【解答】解:设左焦点为F',令|AF|=r1,|AF'|=r2,则|BF|=|F'A|=r2,∴r2﹣r1=2a,∵点A关于原点O的对称点为B,AF⊥BF,∴|OA|=|OB|=|OF|=c,∴r22+r12═4c2,∴r1r2=2(c2﹣a2)∵S△ABF=2S△AOF,∴r1r2═2?c2sin2α,∴r1r2═2c2sin2α∴c2sin2α=c2﹣a2∴e2=,∵α∈[,],∴sin2α∈[,],∴e2=∈[2,(+1)2]∴e∈[,+1].故选:B.【点评】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要认真审题,注意三角函数性质的灵活运用.8.若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,则关于x的一元二次方程x2+2ax+b2=0有实根的概率是()A. B. C. D.参考答案:B【考点】CF:几何概型;54:根的存在性及根的个数判断.【分析】本题考查的知识点是几何概型的意义,关键是要找出(a,b)对应图形的面积,及满足条件“关于x的一元二次方程x2+2ax+b2=0有实根”的点对应的图形的面积,然后再结合几何概型的计算公式进行求解.【解答】解:如下图所示:试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}(图中矩形所示).其面积为6.构成事件“关于x的一元二次方程x2+2ax+b2=0有实根”的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}(如图阴影所示).所以所求的概率为=.故选B【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.9.已知椭圆方程,椭圆上点M到该椭圆一个焦点F的距离是2,N是MF的中点,O是椭圆的中心,那么线段ON的长是
(
)A.2
B.4
C.8
D.参考答案:B10.随着市场的变化与生产成本的降低,每隔年计算机的价格降低,则年价格为元的计算机到年价格应为
A.元
B.元
C.元
D.元参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.如图所示,在圆锥SO中,AB,CD为底面圆的两条直径,,且,,P为SB的中点,则异面直线SA与PD所成角的正切值为__________.参考答案:【分析】由于与是异面直线,所以需要平移为相交直线才能找到异面直线与所成角,由此连接OP再利用中位线的性质得到异面直线与所成角为,并求出其正切值。【详解】连接,则,即为异面直线与所成的角,又,,,平面,,即,为直角三角形,.【点睛】本题考查了异面直线所成角的计算,关键是利用三角形中位线的性质使异面直线平移为相交直线。12.已知,
则=
。参考答案:1略13.在空间直角坐标系o﹣xyz中,点A(1,2,2),则|OA|=
,点A到坐标平面yoz的距离是
.参考答案:3,1【考点】点、线、面间的距离计算.【专题】计算题;数形结合;分析法;空间位置关系与距离.【分析】根据空间中两点间的距离公式,求出|OA|的值.利用点A(x,y,z)到坐标平面yoz的距离=|x|即可得出.【解答】解:根据空间中两点间的距离公式,得:|OA|==3.∵A(1,2,2),∴点A到平面yoz的距离=|1|=1.故答案为:3,1【点评】本题考查了空间中两点间的距离公式的应用问题,熟练掌握点A(x,y,z)到坐标平面yoz的距离=|x|是解题的关键,属于中档题.14.已知直线与双曲线没有公共点,则实数的取值范围为____________.参考答案:略15.定义在上的函数满足:,当时,,则=___________.参考答案:略16.命题p:若0<a<1,则不等式ax2﹣2ax+1>0在R上恒成立,命题q:a≥1是函数在(0,+∞)上单调递增的充要条件;在命题①“p且q”、②“p或q”、③“非p”、④“非q”中,假命题是.参考答案:①③【考点】复合命题的真假.【分析】先判断命题p,q的真假,然后根据由“且“,“或“,“非“逻辑连接词构成的命题的真假情况,即可找出这四个命题中的真命题和假命题.【解答】解:命题p:△=4a2﹣4a=4a(a﹣1),∵0<a<1,∴△<0,∴不等式ax2﹣2ax+1>0在R上恒成立,∴该命题为真命题;命题q:f′(x)=a+,若f(x)在(0,+∞)上单调递增,则f′(x)>0,即ax2+1>0,若a≥0,该不等式成立;若a<0,解该不等式得:﹣<x<,即此时函数f(x)在(0,+∞)上不单调递增,∴a≥0是函数f(x)在(0,+∞)上单调递增的充要条件,∴该命题为假命题;∴p且q为假命题,p或q为真命题,非p为假命题,非q为真命题;∴假命题为:①③,故答案为:①③;17.若不等式组表示的平面区域是一个三角形,则a的取值范围为.参考答案:0<a≤1或a≥【考点】简单线性规划.【分析】画出前三个不等式构成的不等式组表示的平面区域,求出A,B的坐标,得到当直线x+y=a过A,B时的a值,再由题意可得a的取值范围.【解答】解:如图,联立,解得A().当x+y=a过B(1,0)时,a=1;当x+y=a过A()时,a=.∴若不等式组表示的平面区域是一个三角形,则0<a≤1或a≥.故答案为:0<a≤1或a≥.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)给定两个命题,:对任意实数都有恒成立;:.如果∨为真命题,∧为假命题,求实数的取值范围.参考答案:或.19.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于3?若存在,求出直线l的方程;若不存在,请说明理由.参考答案:【考点】椭圆的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)依题意,可设椭圆C的方程为=1,(a>b>0),由椭圆C经过点A(2,3),且点F(2,0)为其右焦点,利用椭圆定义及性质列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)假设存在符合题意的直线l,其方程为y=,与椭圆联立得到3x2+3tx+t2﹣12=0,由此利用根的判别式、点到直线距离公式能求出直线l的方程.【解答】解:(Ⅰ)依题意,可设椭圆C的方程为=1,(a>b>0),∵点F(2,0)为椭圆C的右焦点,∴左焦点为F1(﹣2,0),∴,解得a=4,c=2,又a2=b2+c2,所以b2=12,故椭圆C的方程为.(Ⅱ)假设存在符合题意的直线l,其方程为y=,由,解得3x2+3tx+t2﹣12=0,∵直线l与椭圆C有公共点,∴△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4,另一方面,由直线OA与l的距离d=3,得=3,解得t=±,∵∈[﹣4,4],∴符合题意的直线l为y=.【点评】本题考查椭圆方程的求法,考查符合条件的直线方程是否存在的判断与求法,是中档题,解题时要认真审题,注意根的判别式、点到直线距离公式的合理运用.20.(本小题满分12分)已知函数有极值.(Ⅰ)求的取值范围;(Ⅱ)若在处取得极值,且当时,恒成立,求的取值范围.参考答案:(Ⅰ)∵,∴,--------2分
要使有极值,则方程有两个实数解,
从而△=,∴.
------------4分(Ⅱ)∵在处取得极值,
∴,∴.-----------6分∴,∵,-1+0_↗极大值↘∴时,在处取得最大值,--------10分∵时,恒成立,∴,即,∴或,即的取值范围是.------------12分21.
已知函数的定义域为A,B={}.
(I)求AB;
(II)求.参考答案:22.已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为直角时,求△OMN的面积.参考答案:【考点】抛物线的简单性质.【分析】(Ⅰ)设抛物线方程为x2=2py,把点(2,1)代入运算求得p的值,即可求得抛物线的标准方程;(Ⅱ)由直线与圆相切可得,把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及∠MON为直角则,求得t=4,运用弦长公式求得|MN|,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC TS 17022:2012 RU Conformity assessment - Requirements and recommendations for content of a third-party audit report on management systems
- 【正版授权】 IEC 60641-2:2004 FR-D Pressboard and presspaper for electrical purposes - Part 2: Methods of tests
- 【正版授权】 IEC 60227-7:1995+AMD1:2003 CSV EN-D Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V - Part 7: Flexible cables screened and unscree
- 定位课程内容课件
- 乡镇护理工作总结
- 2025年社区护士工作方案
- 怎样制定2025年工作销售方案
- 2025年国庆节创意活动策划方案
- 2025年元旦团日活动方案
- 直肠癌的护理查房
- 抖音运营考核试题及答案
- 【百强校】【黑吉辽卷】黑龙江省哈尔滨市第三中学2025年高三学年第一次模拟考试(哈三中一模)语文试卷
- 2025年河南医学高等专科学校单招职业适应性考试题库含答案
- 肿瘤化学疗法的护理
- 2025至2030年中国网球捡球篮数据监测研究报告
- 角膜塑形镜试戴片参数选择和配适评估巩朝雁课件
- 2025年河南经贸职业学院单招职业技能测试题库1套
- 美团述职报告
- Unit 1 Laugh out Loud!Understanding ideas-The Best Medicine 说课稿-2024-2025学年高中英语外研版(2019)选择性必修第一册
- 2024年西安经济技术开发区管委会招聘笔试真题
- 2024年湖北工程职业学院高职单招语文历年参考题库含答案解析
评论
0/150
提交评论