第4章 群落相似性和聚类分析_第1页
第4章 群落相似性和聚类分析_第2页
第4章 群落相似性和聚类分析_第3页
第4章 群落相似性和聚类分析_第4页
第4章 群落相似性和聚类分析_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EstimatingCommunityParameters

Communityecologistsfaceaspecialsetofstatisticalproblemsinattemptingtocharacterizeandmeasurethepropertiesofcommunitiesofplantsandanimals.Onecommunityparameterissimilarity.Speciesdiversityisanotheroneofthemostobviousandcharacteristicfeaturesofacommunity.

1.MeasurementofSimilarity2.SpeciesDiversityMeasures第四章群落相似性和聚类分析第一节相似性测量在群落研究中,生态学家经常会得到某一群落的物种组成和数量。例如在保护区研究中,我们经常要回答的问题是这几个保护区他们在区系组成上有什么不同?哪些更相似,哪些差异较明显?要回答群落分类的这样复杂问题,我们先以测量两个群落的相似性着手。4.1.1BinaryCoefficients4.1.2DistanceCoefficients4.1.3CorrelationCoefficients4.1.4Morisita’sIndexofSimilarityBinaryCoefficientsThesimplestsimilaritymeasuresdealonlywithpresence/absencedata.Thebasicdataforcalculatingbinary(orassociation)coefficientsisa2×2table.SampleANo.ofspeciespresentNo.ofspeciesabsentabcdSampleBNo.ofspeciespresentNo.ofspeciesabsentWherea=NumberofspeciesinsampleAandsampleB(jointoccurrences)

b=NumberofspeciesinsampleBbutnotinsampleAc=NumberofspeciesinsampleAbutnotinsampleBd=Numberofspeciesabsentinbothsamples(zeromatches)

where=Jaccard’ssimilaritycoefficient=Asdefinedaboveinpresence/absencematrix

BinaryCoefficientsThereisconsiderabledisagreementintheliteratureaboutwhetherdisabiologicallymeaningfulnumber.Therearemorethan20binarysimilaritymeasuresavailableintheliterature(CheethamandHazel1969),andtheyhavebeenreviewedbyCliffordandStephenson(1975)andbyRomesburg(1984).CoefficientofJaccard

ThecoefficientofJaccardisexpressedasfollows:where=Euclideandistancebetweensamplesand=Numberofindividuals(orbiomass)ofspeciesinsample=Numberofindividuals(orbiomass)ofspeciesinsample=TotalnumberofspeciesEuclideanDistance

ThisdistanceisformallycalledEuclidiandistanceandcouldbemeasuredfromFigure11.2witharuler.Moreformally.Euclideandistanceincreaseswiththenumberofspeciesinthesamples,andtocompensateforthis,theaveragedistanceisusuallycalculated:where=AverageEuclideandistancebetweensamplesjandk

=Euclideandistance(calculatedinequation11.5)

n=NumberofspeciesinsamplesBothEuclideandistanceandaverageEuclideandistancevaryfrom0toinfinity;thelargerthedistance,thelesssimilarthetwocommunities.OneofthesimplestmetricfunctionsiscalledtheManhattan,orcity-block,metric:where=Manhattandistancebetweensamplesjandk=Numberofindividualsinspeciesiineachsamplejandkn=NumberofspeciesinsamplesThisfunctionmeasuresdistancesasthelengthofthepathyouhavetowalkinacity—hencethename.TwomeasuresbasedontheManhattanmetrichavebeenusedwidelyinplantecologytomeasuresimilarity.Bray-CurtisMeasure

BrayandCurtis(1957)standardizedtheManhattanmetricsothatithasarangefrom0(similar)to1(dissimilar).whereB=Bray-Curtismeasureofdissimilarity=Numberofindividualsinspeciesiineachsample(j,k)

n=NumberofspeciesinsamplesSomeauthors(e.g.,Wolda1981)prefertodefinethisasameasureofsimilaritybyusingthecomplementoftheBray-Curtismeasure(1.0–B).TheBray-Curtismeasureisdominatedbytheabundantspecies,sothatrarespeciesaddverylittletothevalueofthecoefficient.CanberraMetric

LanceandWilliams(1967)standardizedtheManhattanmetricoverspeciesinsteadofindividualsandinventedtheCanberrametric:whereC=Canberrametriccoefficientofdissimilaritybetweensamplesjandk

n=Numberofspeciesinsamples=NumberofindividualsinspeciesIinthesample(j,k)TheCanberrametricisnotaffectedasmuchbythemoreabundantspeciesinthecommunity,andthusdiffersfromtheBray-Curtismeasure.TheCanberrametrichastwoproblems.Itisundefinedwhentherearespeciesthatareabsentfrombothcommunitysamples,andconsequentlymissingspeciescancontributenoinformationandmustbeignored.Whennoindividualsofaspeciesarepresentinonesample,butarepresentinthesecondsample,theindexisatmaximumvalue(CliffordandStephenson1975).Toavoidthissecondproblem,manyecologistsreplaceallzerovaluesbyasmallnumber(like0.1)whendoingthesummations.TheCanberrametricrangesfrom0to1.0and,liketheBray-Curtismeasure,canbeconvertedintoasimilaritymeasurebyusingthecomplement(1.0–C).BoththeBray-CurtismeasureandtheCanberrametricmeasurearestronglyaffectedbysamplesize(Wolda1981).

4.1.3CorrelationCoefficients

Onefrequentlyusedapproachtothemeasurementofsimilarityistousecorrelationcoefficientsofthestandardkinddescribedineverystatisticsbook(e.g.,SokalandRohlf1995)Armstrong(1977)trappedninespeciesofsmallmammalsintheRockyMountainsofColoradoandobtainedrelativeabundance(percentageoftotalcatch)estimatesfortwohabitattypes(“communities”)asfollows:例:SmallmammalspeciesHabitattypeScSvEmPmCgPiMlMmZpWillowoverstory7058504031535Nooverstory1011202098114644EuclideanDistanceFromequation(11.5),AverageEuclideandistanceBray-CurtisMeasureTouseasameasureofsimilaritycalculatethecomplementofB:CanberrametricTousetheCanberrametricasameasureofsimilaritycalculateitscomplement:例

EFFECTSOFADDITIVEANDPROPORTIONALCHANGESINSPECIESABUNDANCESONDISTANCEMEASURESANDCORRELATIONCOEFFICIENTS.HypotheticalComparisonofNumberofIndividualsinTwoCommunitieswithFourSpecies

Species1234CommunityA5025105CommunityB40302010CommunityB1(proportionalchange,2×)80604020CommunityB2(additivechange,+30)70605040

相关系数测度有人们希望的特点:当两个群落的样本之间是成比例的,或可加的差异,那么该系数对差异是极不敏感的。而所有距离测度对这些差异却很敏感。而相关系数测度的缺点则是强烈受样本大小的影响。特别是在高多样性的群落中更是这样。SamplescomparedA–BA–B1A–B2AverageEuclideandistance7.9028.5033.35Bray-Curtismeasure0.160.380.42Canberrametric0.220.460.51Pearsoncorrelationcoefficient0.960.960.96Spearmanrankcorrelationcoefficient1.001.001.00Conclusion:Ifyouwishyourmeasureofsimilaritytobeindependentofproportionaloradditivechangesinspeciesabundances,youshouldnotuseadistancecoefficienttomeasuresimilarity.Morisita’sIndexofSimilarity

ThismeasurewasfirstproposedbyMorisita(1959)tomeasuresimilaritybetweentwocommunities.ItshouldnotbeconfusedwithMorisita’sindexofdispersion(Section6.4.4).ItiscalculatedasProbabilitythatanindividualdrawnfromsamplejandonedrawnfromsamplekwillbelongtothesamespeciesProbabilitythattwoindividualdrawnfromeitherjorkwillbelongtothesamespeciesXij=numberofindividualsofspeciesiinsamplejNj=TotelnumberofindividualsinsamplejTheMorisitaindexvariesfrom0(nosimilarity)toabout1.0(completesimilarity).TheMorisitaindexwasfromulatedforcountsofindividualsandnotforotherabundanceestimatesbasedonbiomass,productivity,orcover.Horn(1966)proposedasimplifiedMorisitaindexinwhichallthe(-1)termsinequations(11.13)and(11.14)areignored:whereSimplifiedMorisitaindexofsimilarity(Horn1966)Thisformulaisappropriatewhentheoriginaldataareexpressedasproportionsratherthannumbersofindividualsandshouldbeusedwhentheoriginaldataarenotnumbersbutbiomass,cover,orproductivity.TheMorisitaindexofsimilarityisnearlyindependentofsamplesize,exceptforsamplesofverysmallsize.Morisita(1959)didextensivesimulationexperimentstoshowthis,andtheseresultswereconfirmedbyWolda(1981),whorecommendedMorisita’sindexasthebestoverallmeasureofsimilarityforecologicaluse.H.Wolda1981SimilarityIndices,SampleSizeandDiversityOecologia50:296-302第二节聚类分析聚类分析是研究分类问题的一种多元统计方法。4.2.1类与类之间的距离4.2.1.1最短距离法设类与类中两个最近元素之间的距离为与类之间的最短距离。4.2.1.2最长距离法4.2.1.3类平均法[unweigtedpair-groupmethodusingarithmeticaverages,UPGMA(SneathandSokal1973;Raneslurg1984)]设类与类中任意两个元素之间距离的平均值为两类之间的类平均距离。为与中任意两个元素之间距离。为中元素个数。为中元素个数。4.2.2聚类过程(1)从距离最短的一对样本开始,聚成第一类。(2)寻找第二对距离最短的样本,或者是于已形成的类最短的样本,形成新的一类。(3)重复步骤(2),直到所有的样本形成一大类。例

MATRIXOFSIMILARITYCOEFFICIENTSFORTHESEABIRDDATAINTABLE11.5.ISLANDSAREPRESENTEDINSAMEORDERASINTABLE11.5a

CHPLICINSCLCTSISPISGICH1.00.880.990.660.770.750.360.510.49PLI1.00.880.620.700.710.360.510.49CI1.00.660.780.750.360.500.48NS1.00.730.640.280.530.50CL1.00.760.290.510.49CT1.00.340.460.45SI1.00.190.20SPI1.00.80SGI1.0

aThecomplementoftheCanberrametric(1.0–C)isusedastheindexofsimilarity.Notethatthematrixissymmetricalaboutthediagonal.4.2.3ClassificationClassificationisoftenthefinalgoalofcommunityanalyses,sothatecologistscanassignnamestoclassesorgroups.Classificationisespeciallyimportantinappliedecologyandconservation.Ecologistshaveclassifiedplantcommunitiesonthebasisofmanydifferentcharacteristics,andsincetheadventofcomputers,therehasbeenagrowingliteratureonobjective,quantitativemethodsof

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论