版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE102022年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.实数a的绝对值是,a的值是(D)A. B.﹣ C.± D.±2.如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是(B)A. B. C. D.3.下列运算正确的是(D)A.(﹣3xy)2=3x2y2 B.3x2+4x2=7x4 C.t(3t2﹣t+1)=3t3﹣t2+1 D.(﹣a3)4÷(﹣a4)3=﹣14.要检验一个四边形的桌面是否为矩形,可行的测量方案是(C)A.测量两条对角线是否相等 B.度量两个角是否是90° C.测量两条对角线的交点到四个顶点的距离是否相等 D.测量两组对边是否分别相等5.射击时,子弹射出枪口时的速度可用公式v=进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为(D)A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s6.关于x,y的方程组的解中x与y的和不小于5,则k的取值范围为(A)A.k≥8 B.k>8 C.k≤8 D.k<87.用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为(B)A. B. C.2 D.8.“俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:组别零花钱数额x/元频数一x≤10二10<x≤1512三15<x≤2015四20<x≤25a五x>255关于这次调查,下列说法正确的是(B)A.总体为50名学生一周的零花钱数额 B.五组对应扇形的圆心角度数为36° C.在这次调查中,四组的频数为6 D.若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人9.如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是(C)A.30° B.25° C.20° D.10°10.如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是(A)A.(﹣2,3) B.(﹣3,2) C.(﹣2,4) D.(﹣3,3)11.如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是(D)A.∠BAQ=40° B.DE=BD C.AF=AC D.∠EQF=25°【解析】A.由作图可知,AQ平分∠BAC,∴∠BAP=∠CAP=∠BAC=40°,故选项A正确,不符合题意;B.由作图可知,GQ是BC的垂直平分线,∴∠DEB=90°,∵∠B=30°,∴DE=BD,故选项B正确,不符合题意;C.∵∠B=30°,∠BAP=40°,∴∠AFC=70°,∵∠C=70°,∴AF=AC,故选项C正确,不符合题意;D.∵∠EFQ=∠AFC=70°,∠QEF=90°,∴∠EQF=20°;故选项D错误,符合题意.故选:D.12.如图,一次函数y=x+4的图象与x轴,y轴分别交于点A,B,点C(﹣2,0)是x轴上一点,点E,F分别为直线y=x+4和y轴上的两个动点,当△CEF周长最小时,点E,F的坐标分别为(C)A.E(﹣,),F(0,2) B.E(﹣2,2),F(0,2) C.E(﹣,),F(0,) D.E(﹣2,2),F(0,)【解析】作C(﹣2,0)关于y轴的对称点G(2,0),作C(2,0)关于直线y=x+4的对称点D,连接AD,连接DG交AB于E,交y轴于F,如图:∴DE=CE,CF=GF,∴CE+CF+EF=DE+GF+EF=DG,此时△CEF周长最小,由y=x+4得A(﹣4,0),B(0,4),∴OA=OB,△AOB是等腰直角三角形,∴∠BAC=45°,∵C、D关于AB对称,∴∠DAB=∠BAC=45°,∴∠DAC=90°,∵C(﹣2,0),∴AC=OA﹣OC=2=AD,∴D(﹣4,2),由D(﹣4,2),G(2,0)可得直线DG解析式为y=﹣x+,在y=﹣x+中,令x=0得y=,∴F(0,),由得,∴E(﹣,),∴E的坐标为(﹣,),F的坐标为(0,),故选:C.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.不等式组的解集是x<﹣2.14.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,﹣1;转盘B被四等分,分别标有数字3,2,﹣2,﹣3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是.15.若一个圆锥体的底面积是其表面积的,则其侧面展开图圆心角的度数为120°.【解析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n°.由题意得S底面面积=πr2,l底面周长=2πr,∵个圆锥体的底面积是其表面积的,∴S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=,解得n=120.故答案为:120°.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为121元(利润=总销售额﹣总成本).【解析】当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.17.如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为π.【解析】∵AB=2,∴AA1=1,半圆①弧长为=π,同理A1A2=,半圆②弧长为=()2π,A2A3=,半圆③弧长为=()3π,.半圆⑧弧长为=()8π,∴8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.故答案为:π.三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:÷(a﹣)﹣,其中a=2sin45°+()﹣1.解:÷(a﹣)﹣=×﹣=﹣=,∵a=2sin45°+()﹣1=2×+2=,代入得:原式==;故答案为:;.19.(8分)为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;(2)请根据图表中的信息,回答下列问题.众数中位数方差八年级竞赛成绩781.88九年级竞赛成绩a8b①表中的a=8,b=1.56;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?解:(1)由题意得:八年级成绩的平均数是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级成绩的平均数是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判定哪个年级的成绩比较好;(2)①九年级竞赛成绩中8分出现的次数最多,故众数a=8分;九年级竞赛成绩的方差为:s2=×[8×(6﹣8)2+9×(7﹣8)2+14×(8﹣8)2+13×(9﹣8)2+6×(10﹣8)2]=1.56,故答案为:8;1.56;②如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.56,又因为两个年级的平均数相同,九年级的成绩的波动小,所以应该给九年级颁奖;(3)八年级的获奖率为:(10+7+11)÷50=56%,九年级的获奖率为:(14+13+6)÷50=66%,∵66%>56%,∴九年级的获奖率高.20.(8分)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.21.(8分)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?解:(1)设原计划每天改造管网x米,则实际施工时每天改造管网(1+20%)x米,由题意得:﹣=10,解得:x=60,经检验,x=60是原方程的解,且符合题意.此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加m米,由题意得:(40﹣20)(72+m)≥3600﹣72×20,解得:m≥36.答:以后每天改造管网至少还要增加36米.22.(8分)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正上方45米E点处时,测得塔AB的顶端A和古槐CD的顶端C的俯角分别为26.6°和76°(点B,H,D三点在同一直线上).已知塔高为39米,塔基B与树底D的水平距离为20米,求古槐的高度(结果精确到1米).(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)解:过点A作AM⊥EH于M,过点C作CN⊥EH于N,由题意知,AM=BH,CN=DH,AB=MH,在Rt△AME中,∠EAM=26.6°,∴tan∠EAM=,∴AM==≈=12米,∴BH=AM=12米,∵BD=20,∴DH=BD﹣BH=8米,∴CN=8米,在Rt△ENC中,∠ECN=76°,∴tan∠ECN=,∴EN=CN•tan∠ECN≈8×4.01=32.08米,∴CD=NH=EH﹣EN=12.92≈13(米),即古槐的高度约为13米.23.(8分)如图,直线y=px+3(p≠0)与反比例函数y=(k>0)在第一象限内的图象交于点A(2,q),与y轴交于点B,过双曲线上的一点C作x轴的垂线,垂足为点D,交直线y=px+3于点E,且S△AOB:S△COD=3:4.(1)求k,p的值;(2)若OE将四边形BOCE分成两个面积相等的三角形,求点C的坐标.解:(1)∵直线y=px+3与y轴交点为B,∴B(0,3),即OB=3,∵点A的横坐标为2,∴S△AOB==3,∵S△AOB:S△COD=3:4,∴S△COD=4,设C(m,),∴m•=4,解得k=8,∵点A(2,q)在双曲线y=上,∴q=4,把点A(2,4)代入y=px+3,得p=,∴k=8,p=;(2)∵C(m,),∴E(m,m+3),∵OE将四边形BOCE分成两个面积相等的三角形,∴S△BOE=S△COE,∵S△BOE=,S△COE=()﹣4,∴=()﹣4,解得m=4或m=﹣4(不符合题意,舍去),∴点C的坐标为(4,2).24.(10分)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.(1)证明:在△AOF和△EOF中,,∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC与⊙O相切,∴OE⊥FC,∴∠OAF=∠OEF=90°,即OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,∴AF==8,∵∠OCE=∠FCA=90°,∴△OEC∽△FAC,∴,设⊙O的半径为r,则,解得r=,在Rt△FAO中,∠FAO=90°,AF=8,AO=,∴OF==,∴FD=OF﹣OD=﹣,即FD的长为﹣.25.(12分)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省牡丹江市部分学校2025届高三上学期期中考试数学试题 含解析
- 2024年度环保型工业废气处理系统安装合同
- 2024年度拆装施工质量检测合同
- 采用多智能体强化学习的爬虫控制
- 2024年度影视制作与发行合同-包含剧本创作、拍摄、后期制作等
- 高血压与肾脏疾病的关系
- 湖南省长沙市宁乡市西部乡镇2024-2025学年九年级上学期11月期中物理试题(解析版)
- 公司转正申请书范文锦集9篇
- 2024年度新材料研发与技术转让合同
- 天津市河西区2024-2025学年高三上学期期中考试 数学 含答案
- 中央企业商业秘密安全保护技术指引2015版
- 0417 教学能力大赛 公共基础《英语 》教学实施报告 电子商务专业
- 校园及周边重点人员排查情况表
- mbti性格测试题及答案(十篇)
- 钢筋加工厂龙门吊的安装与拆除专项施工方案
- 土力学与地基基础教案
- 方太销售及市场营销管理现状
- Module9 Unit 2 课件-外研版八年级英语上册
- 蔬菜栽培的季节与茬口安排-陇东学院教学提纲
- 三年级《稻草人》阅读测试试题附答案
- 《新闻学概论》第十章
评论
0/150
提交评论