苏教版(SJ)2022~2023学年八年级(上)期末数学试卷5【含答案】_第1页
苏教版(SJ)2022~2023学年八年级(上)期末数学试卷5【含答案】_第2页
苏教版(SJ)2022~2023学年八年级(上)期末数学试卷5【含答案】_第3页
苏教版(SJ)2022~2023学年八年级(上)期末数学试卷5【含答案】_第4页
苏教版(SJ)2022~2023学年八年级(上)期末数学试卷5【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

——苏教版(SJ)2022~2023学年八年级(上)期末数学试卷一、选择题:(本大题共6小题,每小题3分,计18分)1.(3分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.2.(3分)点P(2,﹣3)关于x轴的对称点是()A.(﹣2,3) B.(2,﹣3) C.(﹣2,3) D.(2,3)3.(3分)下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,134.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS5.(3分)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分 B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB6.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题:(本大题共10小题,每小题3分,计30分)7.(3分)6的平方根为.8.(3分)在,2π,﹣2,0,0.454454445…,﹣,中,无理数的有个.9.(3分)若y=x﹣b是正比例函数,则b的值是.10.(3分)一次函数y=2x+1的图象不经过第象限.11.(3分)近似数3.0×102精确到位.12.(3分)已知实数x,y满足|3+x|+=0,则代数式(x+y)2018的值为.13.(3分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是.14.(3分)已知△ABC的三边长分别为6、8、10,则最长边上的中线长为.15.(3分)汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是.16.(3分)如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是.三、解答题(本大题共10小题,共102分.)17.(6分)计算:﹣12018+()﹣2﹣+.18.(10分)求下列各式中的x:(1)(x﹣1)2=16;(2)x3+2=1.19.(8分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)20.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.21.(10分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?23.(12分)如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是,因变量是;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.24.(12分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=,∠DEC=;点D从B向C运动时,∠BAD逐渐变(填“大”或“小”),∠BAD∠CDE(填“=”或“>”或“<”).(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.25.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.26.(14分)【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.

参考答案与试题解析一、选择题:(本大题共6小题,每小题3分,计18分)1.(3分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.2.(3分)点P(2,﹣3)关于x轴的对称点是()A.(﹣2,3) B.(2,﹣3) C.(﹣2,3) D.(2,3)【解答】解:点P(2,﹣3)关于x轴的对称点是(2,3).故选:D.3.(3分)下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,13【解答】解:A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.4.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选:B.5.(3分)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分 B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.6.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.二、填空题:(本大题共10小题,每小题3分,计30分)7.(3分)6的平方根为.【解答】解:∵()2=6∴6的平方根为,故答案为:.8.(3分)在,2π,﹣2,0,0.454454445…,﹣,中,无理数的有4个.【解答】解:在,2π,﹣2,0,0.454454445…,﹣,中,无理数有2π、0.454454445…、﹣、这4个,故答案为:4.9.(3分)若y=x﹣b是正比例函数,则b的值是0.【解答】解:由题意得:﹣b=0,解得:b=0,故答案为:0.10.(3分)一次函数y=2x+1的图象不经过第四象限.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.11.(3分)近似数3.0×102精确到十位.【解答】解:近似数3.0×102精确十位,故答案为:十.12.(3分)已知实数x,y满足|3+x|+=0,则代数式(x+y)2018的值为1.【解答】解:∵|3+x|+=0,∴3+x=0且y﹣2=0,则x=﹣3、y=2,所以原式=(﹣3+2)2018=(﹣1)2018=1,故答案为:1.13.(3分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是(4,2).【解答】解:∵点A(﹣4,0),点B(0,1),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移1个单位,∴点B的对应点的坐标为(4,2).故答案为:(4,2);14.(3分)已知△ABC的三边长分别为6、8、10,则最长边上的中线长为5.【解答】解:∵62+82=100,102=100,∴62+82=102,∴这个三角形是直角三角形,∴最长边上的中线长为5,故答案为:5.15.(3分)汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是等腰三角形的底边上的中线、底边上的高重合.【解答】解:∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB.故答案为:等腰三角形的底边上的中线、底边上的高重合.16.(3分)如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是0<a<2.【解答】解:当P在直线y=2x+2上时,a=2×(﹣1)+2=﹣2+2=0,当P在直线y=2x+4上时,a=2×(﹣1)+4=﹣2+4=2,则0<a<2.故答案为:0<a<2三、解答题(本大题共10小题,共102分.)17.(6分)计算:﹣12018+()﹣2﹣+.【解答】解:﹣12018+()﹣2﹣+=﹣1+4﹣5﹣3=﹣5.18.(10分)求下列各式中的x:(1)(x﹣1)2=16;(2)x3+2=1.【解答】解:(1)(x﹣1)2=16∴x﹣1=±4,即x﹣1=4或x﹣1=﹣4,解得x=5或﹣3;(2)x3+2=1,∴x3=﹣1,解得x=﹣1.19.(8分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)【解答】解:(1)有以下答案供参考(每个图画对得(2分),共4分)20.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.【解答】证明:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF,∴BE=CF.21.(10分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.22.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?【解答】解:(1)设每个文具盒x元,每支钢笔y元,由题意得:,解之得:;(2)由题意得:w=14x+15(10﹣x)=150﹣x,∵w随x增大而减小,∴当x=3时,W最大值=150﹣3=147,即最多花147元.23.(12分)如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是离家时间,因变量是离家距离;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.【解答】解:(1)在这个变化过程中自变量是离家时间,因变量是离家距离,故答案为:离家时间、离家距离;(2)根据图象可知小李2h后到达离家最远的地方,此时离家30km;(3)当1≤t≤2时,设s=kt+b,将(1,10)、(2,30)代入,得:,解得:,∴s=20t﹣10,当s=20时,有20t﹣10=20,解得t=1.5,由图象知,当t=4时,s=20,故当t=1.5或t=4时,小李与家相距20km;(4)小李这次出行的平均速度为=12(km/h).24.(12分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BAD逐渐变大(填“大”或“小”),∠BAD=∠CDE(填“=”或“>”或“<”).(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【解答】解:(1)当∠BDA=115°时,∠EDC=180°﹣115°﹣40°=25°,在△DEC中,∠DEC=180°﹣∠EDC﹣∠C=115°,由图形可知,点D从B向C运动时,∠BAD逐渐变大,∵∠ADC=∠B+∠BAD=∠ADE+∠EDC,∠B=∠ADE=40°,∴∠BAD=∠EDC,故答案为:25°,115°,大,=;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.25.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).26.(14分)【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论