2020年贵州省黔西南州中考数学二模试卷_第1页
2020年贵州省黔西南州中考数学二模试卷_第2页
2020年贵州省黔西南州中考数学二模试卷_第3页
2020年贵州省黔西南州中考数学二模试卷_第4页
2020年贵州省黔西南州中考数学二模试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页,共17页学生选修课程条形毓计图在扇形统计图中, m的值是学生选修课程条形毓计图在扇形统计图中, m的值是学生选修课程扇形统计图(2)将条形统计图补充完整;2名女同学,其余为男同学,现要从中随(3)2名女同学,其余为男同学,现要从中随请直接写出所抽取的2名同机抽取2名同学代表学校参加某社区组织的书法活动,学恰好是1名男同学和请直接写出所抽取的2名同.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为 y元.(1)求y与x的函数关系式并直接写出自变量 x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25.观察下列等式:25.观察下列等式:第1个等式:第2个等式:第3个等式:a1=lxT=2X(1-T);1I 11a2=3x5=2X(3-5);1I 11a3=5x7=2X(5-7);1I11第4个等式:电=7*g寸X(亍石);请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:an==(n为正整数);3)求a1+a2+a3+a4+…+aioo的值..如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系, A、B两点的坐标分别为(-2志,0)、(0,乖),直线DE1DC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着A-D-C的路线向终点C匀速运动,设4PDE的面积为S(SwQ,点P的运动时间为t秒.(1)求直线DE的解析式;(2)求S与t之间的函数关系式,并写出自变量 t的取值范围;(3)当t为何值时,/EPD+/DCB=90。?并求出此时直线BP与直线AC所夹锐角的正切值.答案和解析.【答案】D【解析】解:U的倒数是-4,故选:D.1a的倒数是-(aw。.此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数..【答案】C【解析】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3歹U,从左到右的列数分别是2,2,1.故选:C.从正面看可看到每列正方体的最多个数分别为 2,2,1,表示为平面图形即可,本题灵活考查了三种视图之间的关系以及视图和实物之间的关系, 同时还考查了对图形的想象力..【答案】B【解析】解:0.0000210=2.10X10—5,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为 aX10—n,与较大数的科学记数法不同的是其所使用的是负指数哥, 指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为 aX10—n,其中1wa|<10,n为由原数左边起第一个不为零的数字前面的 0的个数所决定..【答案】C【解析】解:..正n边形的一个内角为135。,..正n边形的一个外角为180°-135=45°,n=360T5=8.故选:C.根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数, 再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键..【答案】D【解析】解:A、可能发生,也可能不发生,属于随机事件,不一定会中奖,不符合题息;B、可能发生,也可能不发生,属于随机事件,不符合题意;C、可能发生,也可能不发生,属于随机发生,不符合题意.D、是必然事件,符合题意;故选:D.必然事件就是一定会发生的事件,即发生概率是 1的事件,依据定义即可作出判断.本题主要考查必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件..【答案】B【解析】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念: 轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合..【答案】A【解析】解:4日=鸵=。0,.zBDC=ZACB=/DBC,.zBEC=110°,,zACB=/DBC=35°..zBDC=35°.故选:A.由£=2=2,根据圆周角定理,可得ZBDC=/ACB=/DBC,又由/BEC=110。,即可求得答案.此题考查了圆周角定理以及三角形内角和定理. 此题难度不大,注意掌握数形结合思想的应用..【答案】C4S0【解析】解:原计划用时—,而实际工作效率提高后,所用时间为君前•方程应该表示为:草飞卷味马.故选:C.关键描述语是:“提前了4天完成任务”;等量关系为:原计划用时 -实际用时=4,根据等量关系列式.本题主要考查由实际问题抽象出分式方程的知识点, 列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量三U乍效率..【答案】B【解析】解:,.把P(4,1)代入y=:得:m=4,4-y=T,把y=-2代入上式得:-2=:,x=-2,-Q(-2,-2),即两函数的交点坐标为 P(4,1),Q(-2,-2),.•根据图象信息可得关于x的方程?=kx-b的解为4或-2.故选:B.把P(4,1)代入y=或求出m,得出反比例函数的解析式 y=,把y=-2代入求出Q的横坐标,根据P(和Q的横坐标,即可求出答案.本题考查了一次函数与反比例函数的交点问题, 用待定系数法求反比例函数的解析式等知识点,题目具有一定的代表性,难度适中..【答案】B【解析】解:①根据图象,a<0,b>0,c>0,故①错误;②令x=-1,时y<0,即a-b+cv0,故②错误;「2a+b=0,故③正确;④x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又x=1时函数取得最大值,.a+b+c>am2+bm+c,即a+b>am2+bm=m(am+b),故④正确.故选:B.①由抛物线开口向下a<0,抛物线和y轴的正半轴相交,c>0,-1=1>0,b>0,②令x=-1,时y<0,即a-b+c<0,③%=1,即2a+b=0,④把x=m代入函数解析式中表示出对应的函数值,把x=1代入解析式得到对应的解析式, 根据图形可知x=1时函数值最大,所以x=1对应的函数值大于x=m对应的函数值,化简得到不等式成立,故④正确.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求 2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用..【答案】七【解析】【分析】此题考查了平方根的知识,属于基础题,掌握定义是关键.先计算算术平方根,再根据平方根的定义即可得出答案.【解答】解:偲!=9的平方根为不.故答案为:毛..【答案】m2—1且,【解析】解:根据题意得:伤之;就,解得:x>1且X=.故答案为:X在1且x^.根据二次根式的性质和分式的意义,被开方数大于等于 0,分母不等于0,就可以求解.本题考查函数自变量的取值范围,其中知识点为:分式有意义,分母不为 0;二次根式的被开方数是非负数..【答案】1vcv5【解析】解:,.三角形两边长是方程x2-5x+6=0的两个根,.Xi+X2=5,X1X2=6-.1(xi-x2)2=(X1+X2)2-4x1X2=25-24=1-X1-X2=1,又•X1-X2<C<X1+X2,.1vcv5.故答案为:1vcv5.先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.主要考查了三角形的三边关系和一元二次方程的根与系数的关系, 要知道第三边大于两边差,小于两边和..【答案】甲【解析】解:因为龌=1,方差S甲2〈S乙2,所以成绩较稳定的同学是甲,故答案为:甲.本题需先根据方差表示的意义和甲、 乙两位同学的方差大小即可得出成绩较稳定的同学是谁.本题主要考查了方差的有关概念和计算方法, 解题时要能结合实际问题得出结论是本题的关键..【答案】-3【解析】解:•・方程X2-3x-1=0的两根为X1、X2,.X1+X2=3,X1X2=-1,1 1Xi+x2・吊+1=^7=-3・故答案为:-3.由方程X2-3x-1=0的两根为X1、X2,根据一元二次方程根与系数的关系, 即可求得X〔+X2=3,1 1xt+x2X1X2=-1,又由京+1=7K■,代入求解即可求得答案.此题考查了一元二次方程根与系数的关系以及分式的加减运算. 此题难度不大,解题的关键是掌握:若二次项系数为 1,常用以下关系:X1,X2是方程x2+px+q=0的两根时,X1+X2=-p,X1X2=q性质的应用..【答案】2(x+y)2

【解析】解:2x2+4xy+2y2=2(x2+2xy+y2)=2(x+y)2.故答案为:2(x+y)2.先提取公因式2,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2i2ab+b2=(aib)2.本题考查了提公因式法, 公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底..【答案】>【解析】【分析】本题考查了二次函数图象上点的坐标特征, 主要利用了二次函数的性质, 熟记性质并求出二次函数的对称轴是解题的关键.先求出二次函数的对称轴为直线 x=3,再根据二次函数的性质解答.【解答】解:二次函数的对称轴为直线 x=-y^-=3,•.a=i>0,.•当xv3时,y随x的增大而减小,•.xi<x2<3,.yi>y2.故答案为:>.18.【答案】2T写【解析】解:连接AO并延长,交CD于点E,连接OC,.直线AB与。。相切于点A,.EALAB,.CD/AB,ZCEA=90°,.AE±CD,11.'CE=2CD=^X4=2,.在Rt^OCE中,OE=")C*Y”=,.AE=OA+OE=4,•在RtAACE中,AC=30E*+/IE,=2%5.故答案为:2点.首先连接AO并延长,交CD于点巳连接OC,由直线AB与。。相切于点A,根据切线的性质,可得AE必B,又由CD/AB,可得AE1CD,然后由垂径定理与勾股定理,求得OE的长,继而求得AC的长.此题考查了切线的性质、垂径定理、勾股定理以及平行线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用..【答案】2【解析】[详解]解:二※3=寸2乂3+2=?。=2,(2^3) 3=2X3=2.

故答案为2.[详解]先根据题中定义计算2^3=;2X3+2=V§=2,则(2X3)派3=2派3=2,然后得到答案.本题考查了立方根和新定义.正确理解新定义的运算法则是解题的关键 ^.【答案】4【解析】解:.00在第一象限关于y=x对称, 力]尸y=;(k>0)也关于y=x对称,P点坐标是(1,3), -4——0IF.•.Q点的坐标是(3,1), 、,工・S阴影=1X3+1>3-2¥M=4.故答案是4.由于。。和y4(k>0)都关于y=x对称,于是易求Q点坐标是(3,1),那么阴影面积等于两个面积相等矩形的面积减去 2个边长是1的正方形的面积.本题考查了反比例函数的性质, 解题的关键是知道反比例函数在 k>0时关于y=x对称.21.【答案】解:(1)(一1严19+g+&T+(r」卮)°+4cos60°=(-1)+2我+2+1+4W=(-1)+2价+2+1+2=2«3+4-(2)——XT1-(1+X1-x=x(1-x),当x=2时,原式=2X(1-2)=-2.【解析】(1)根据哥的乘方、负整数指数哥、灵指数哥和特殊角的三角函数值可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后从-1、1、2三个数中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.本题考查分式的化简求值、哥的乘方、负整数指数哥、灵指数哥和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.22.【答案】(1)证明:连结AO,AC;如图所示:TOC\o"1-5"\h\z•.BC是。0的直径, 这••由AC=90,•.zCAD=90。, BVOJC.E是CD的中点, \ /.AE,CD=CE=DE, 一zECA=ZEAC

.OA=OC,.QAC=/OCA,•.CD是。。的切线,.CDAOC,.•.zECA+ZOCA=90°,.•.zEAC+ZOAC=90°,.OA1AP,.A是。。上一点,•AP是。。的切线;(2)解:由(1)知OA1AP.在Rt^OAP中,..QAP=90°,OC=CP=OA,即OP=2OA,.•.zP=30°,zAOP=60°,.OC=OA,•.小OC是等边三角形,・•热CO=60°,在RtABAC中,zBAC=90°,AB=3<*3,ZACO=60°,ADm南AC= =777y-=3,又•.在RtAACD中,ZCAD=90°,ZACD=90°-/ACO=30°,AC3万「8=8必8=皿30口=2''3•【解析】(1)先由圆周角定理得出ZBAC=90°,再由斜边上的中线性质得出AE』CD=CE=DE,由CD是切线得出CD±OC,即可得出OA1AP,周长结论;(2)先证明AAOC是等边三角形,得出/ACO=60°,再在Rt^BAC和RtAACD中,运用锐角三角函数即可得出结果.本题考查了切线的判定与性质、圆周角定理、直角三角形斜边上的中线性质、等边三角形的判定与性质、锐角三角函数的运用; 熟练掌握切线的判定与性质并结合锐角三角函数进行计算是解决问题的关键.23.【答案】(1)50,30%;(2)50X20%=10(人)50M0%=5(人)学生选修课程条形统计图学生选修课程扇形统计图(3)..5-2=3(名),.•选修书法的5名同学中,有3名男同学,2名女同学,男男男女女男/(男,男)(男,男)(男,女)(男,女)男(男,男)/(男,男)(男,女)(男,女)男(男,男)(男,男)/(男,女)(男,女)女(女,男)(女,男)(女,男)/(女,女)女(女,男)(女,男)(女,男)(女,女)/所有等可能的情况有20种,所抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)=20=5答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是【解析】解:(1)20X0%=50(人)1540=30%答:本次调查白^学生共有 50人,在扇形统计图中,m的值是30%.故答案为:50、30%;(2)见答案;(3)见答案.【分析】(1)首先用选舞蹈课的人数除以它占本次调查的学生总人数的百分率,求出本次调查的学生共有多少人;然后用选乐器课的人数除以本次调查的学生总人数, 求出在扇形统计图中,m的值是多少即可;(2)首先用本次调查的学生总人数乘参加绘画课、书法课的人数占总人数的百分率,求出参加绘画课、书法课的人数各是多少;然后根据参加绘画课、书法课的人数,将条形统计图补充完整即可;(3)首先判断出在被调查的学生中,选修书法的有 3名男同学,2名女同学,然后应用列表法,写出所抽取的2名同学恰好是1名男同学和1名女同学的概率是多少即可.此题主要考查了扇形统计图和条形统计图的综合运用, 要熟练掌握,解答此题的关键是从两种统计图中获取信息并利用获取的信息解题, 条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:(1)当50双w60寸,y=(x-40)(100+60-x)=-x2+200x-6400;当60vxW80寸,y=(x-40)(100-2x+120)=-2x2+300x-8800;.y=-x2+200x-6400(50双w60g.x为整数)y=-2x2+300x-8800(60<x<80g.x为整数);(2)当50»W60寸,y=-(x-100)2+3600;.a=-1v0,且x的取值在对称轴的左侧,-y随x的增大而增大,.•当x=60时,y有最大值2000;当60vxW80寸,y=-2(x-75)2+2450;,.a=-2<0,..当x=75时,y有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.

【解析】(1)由于售价为60时,每个月卖100件,售价上涨或下调影响销量,因此分为50<x<6丽60<x<8cM部分求解;(2)由(1)中求得的函数解析式来根据自变量 x的范围求利润的最大值.本题考查的是函数方程和实际结合的问题,同学们需掌握最值的求法.25.【答案】(1)(2)f2n-l)C2n+1)?2XGn-1-2n+1);(3)a1+a2+a3+a4+…+a1ooiiiit=2X(1—3)+2><(3—5)iiiit=2X(1—3)+2><(3—5)+2X(M—亍)+5*(亍可)+…场汹砺一而。1 1111111 1 1=彳(1w+fe+ee+m@+…+旃-而)11=11-而)1200=-乂——二八.I100= 201,【解析】解:根据观察知答案分别为:11,11、11)荻五;2X(厂五);(2)1 I.,I]、(2)(2n-l)(2n41),2乂^Zfe-I-2n+ ,(3)见答案.【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的 2倍减1和序号的2倍加1.(3)运用变化规律计算.此题考查寻找数字的规律及运用规律计算. 寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.26.【答案】解:由菱形的对称性可得, C(2而,0),D(0,加),.OD=V^,OC=23,tan/DCO=^=],.DE_LDC,・zEDO+/CDO=90°,,・zDCO+/CDO=90°,.zEDO=/DCO,1.tan/EDO=tan/DCO=>PFOEI'OD=J^二工

E(4,0),D(0,4),.•直线DE解析式为y=2x*写,(2)由(1)得E(-;,0),.AE=AO-OE=2--二=,根据勾股定理得,DE=尸:•”三,.,菱形的边长为5,.,菱形的边长为5,如图1,过点过点E作EFMD,EF0D.sin/DAO=m=而,ODxAE3EF= =二,当点p在ad边上运动,即0q〈I1 1 3315S.PDXEF/X(1 1 3315S.PDXEF/X(5-2t)%=中+了,点P在DC边上运动时,即]vtW5时,1 1 5525S=]PDXDE»X(2t-5)1 1 5525S=]PDXDE»X(2t-5)过天t-T;.S=I-(0(5 25S|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论