中考教育数学-数形结合专题_第1页
中考教育数学-数形结合专题_第2页
中考教育数学-数形结合专题_第3页
中考教育数学-数形结合专题_第4页
中考教育数学-数形结合专题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考教育数学——数形结合专题中考教育数学——数形结合专题中考教育数学——数形结合专题适用文案

第九讲数形结合思想

【中考热门分析】

数形结合思想是数学中重要的思想方法,它依据数学识题中的条件和结论之间的内在联系,既分析其数目关系,又揭示其几何意义,使数目关系和几何图形奇妙的结合起来,并充分利用这类结合,研究解决问题的思路,使问题得以解决的思虑方法。几何图形的形象直观,便于理解;代数方法的一般性,解题过程的操作性强,便于掌握。【经典考题讲练】例1.(2015衢州)如图,已知直线y3x3分别交x轴、y轴于点A、B,P是抛物线14yx22x5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线2y3x3于点Q,则当PQ=BQ时,a的值是.4

例2.(2014?广州)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线

()过点A、B,极点为C.点P(m,n)(n<0)为抛物线上一点.

1)求抛物线的分析式与极点C的坐标.

2)当∠APB为钝角时,求m的取值范围.

(3)若,当∠为直角时,将该抛物线向左或向右平移t()个单位,点APB、挪动后对应的点分别记为、,能否存在t,使得首尾挨次连结、、、所PCAB组成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.

分析:(1)待定系数法求分析式即可,求得分析式后变换成极点式即可.

2)由于AB为直径,因此当抛物线上的点P在⊙C的内部时,知足∠APB为钝角,因此-1<m<0,或3<m<4.

(3)左右平移时,使A′D+DB″最短即可,那么作出点C′对于x轴对称点的坐标为C″,获得直线P″C″的分析式,此后把A点的坐标代入即可.

标准文档适用文案

答案:(1)解:依题意把的坐标代入得:;解得:

抛物线分析式为

极点横坐标,将代入抛物线得

(2)如图,当时,设,

过作直线轴,

(注意用整体代入法)

解得

,

当在之间时,

或时,为钝角.

(3)依题意,且

设挪动(向右,向左)

连结

标准文档适用文案

又的长度不变

四边形周长最小,只要最小即可

将沿轴向右平移5各单位各处

沿轴对称为

∴当且仅当、B、三点共线时,最小,且最小为,此时

,设过的直线为,代入

∴即

将代入,得:,解得:

∴当,P、C向左挪动单位时,此时四边形ABP’C’周长最小。

标准文档适用文案

例3.(2012杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE

交AT于点C,OB⊥AT于点B,已知∠EAT=30°,,.(1)

求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣

弧),且EF=5,把△OBC经过平移、旋转和相像变换后,使它的两个极点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在此中找出另一个极点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.

解:(1)∵AE切⊙O于点E,∴OE⊥AE,

∵OB⊥AT,∴在△CAE和△COB中,∠AEC=∠CBO=90°,

而∠BCO=∠ACE,∴∠COB=∠A=30°.(3分)

图(1)

(2)在Rt△ACE中,AE=3,∠A=30°,

∴EC=AE·tan30°=3.

如图(1),连结OM,

在Rt△MOB中,OM=R,MB==,

∴OB==.

在Rt△COB中,∠COB=30°,

标准文档适用文案

∴OC=.

∵OC+EC=R,∴·+3=R

整理得R2+18R-115=0,即(R+23)(R-5)=0,

∴R=-23(不符合题意,舍去),或R=5,∴R=5.(8分)(3)在EF的同一侧,知足题意的三角形共有6个,如图(2)(3)(4),每个图有2个知足题意的三角形.能找出另一个极点也在⊙O上的三角形,如图(1),延伸交⊙O于,连结,则△DFEEODDF为符合条件的三角形.

图(2)图(3)图(4)

由题意得,△DFE∽△OBC.

由(2)得,=2=10,==2,∴===5.(14分)DEROC【解答策略提炼】

解题策略,数形结合思想包含“以形助教”和“以数助形”两个方面,即用数形结合思想解题可分两类:一是依形判教,用形解决数的问题,常有于借助数轴、函数图像、几何图形来

求解代数问题;二十就数论形,用数解决形的问题,常有于运用恒等变形、成立方程(组)、面积变换等求解几何问题。

标准文档适用文案

【专项达标训练】

一、填空题

1.以以下图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一

定点,且MC=8,动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止,在点P的

运动过程中,使△PMC为等腰三角形的点P有()个。

2.已知抛物线y=ax2-2ax-1+a(a>0)与直线x=2,x=3,y=1围成的正方形有公共点,则a的取值

范围是。3.如图,抛物线y=1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0),点M2

(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是24/41。

4.抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,若△ABC

是直角三角形,则ac=.

如图,半径为r1的圆内切于半径为r2的圆,切点为P,过圆心O1的直线与⊙O2交于A、B,与⊙O1交于C、D,已知AC:CD:DB=3:4:2,则r1=.r2

标准文档适用文案

二、解答题

(1)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,求∠AMN+∠ANM的度数。

2)如图,直线y=k1x+b与双曲线y=k2交于A、B两点,其横坐标分别为1和x5,求不等式k1x<k2+b的解集。x

如图,AC为⊙O的直径,B是⊙O外一点,AB交⊙O于E点,过E点作⊙O的切线,交BC于D点,DE=DC,作EF⊥AC于F点,交AD于M点。(1)求证:BC是⊙O的

切线。(2)EM=FM.

标准文档适用文案

(2015?鄂州)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴

交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点

B.

(1)①直接写出点B的坐标;②求抛物线分析式.

(2)若点P为直线AC上方的抛物线上的一点,连结PA,PC.求△PAC的面积的最大值,并

求出此时点P的坐标.

3)抛物线上能否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为极点的三角形与△ABC相像?若存在,求出点M的坐标;若不存在,请说明原因.

标准文档适用文案

【基础要点轮动】选择题1.(-1)-1+(π-3)0+√(-2)2的值为()2A.-1B.-3C.1D.02.要使分式5存心义,则x的取值范围是()x1A.x1B.x<1C.x>1D.x≠-13.对于函数,以下说法错误的选项是()

它的图象散布在一、三象限

B.它的图象既是轴对称图形又是中心对称图形C.当x>0时,y的值随x的增大而增大

当x<0时,y的值随x的增大而减小

如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,OA=3,那么∠AOB所对弧的长

度为()。

A.6πB.5πC.3πD.2π

抛物线y=x2+bx+c(a≠0)图像向右平移2个单位再向下平移3个单位,所得的图像分析

式为=x2-2x-3,则b,c的值为()。

A.b=2,c=2B.b=2,c=0C.b=-2,c=-1D.b=-3,c=2

6.如图,△ABC中,CD⊥AB,垂足为D。以下条件中,不可以够证明△ABC是直角三角形的是()

A.∠A+∠B=90°

222B.AB=AC+BC

C.

D.CD2=AD?BD

7.以下命题是真命题的是()

对角线相互垂直且相等的四边形是正方形

B.有两边和一角对应相等的两个三角形全等

C.两条对角线相等的平行四边形是矩形

标准文档适用文案

D.两边相等的平行四边形是菱形8.以以下图,正方形网格中,网格线的交点称为格点。已知A、B是两格点,假如C也是图中的格点,且使得△ABC为等腰三角形,则C点的个数是(C)

A.6B.7C.8D.9

填空题

如图,直线l1∥l2∥l3,点A、B、C分别在在直线l1、l2、l3上,若∠1=70°,

∠2=50°,则∠ABC=度。

第9题图第10题图10.如图某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则迎水坡面AB的长度是。11.某课外小组的同学们在社会实践活动中检查了20户家庭某月的用电量,以下表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是。

已知菱形ABCD的边长是8,点E在直线AD上,若DE=3,连结BE与对角线AC订交于

点M,则S△ABM:S△CBM的值为。

标准文档适用文案

第10讲综合性解答问题

【中考热门分析】

代数型综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题,波及知识:主要包含方程、函数、不等式等内容。解题策略:用到的数学思想方法有化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等。

几何型综合题是指以几何知识为主或许以几何变换为主的一类综合题。波及知识:主要包含几何的定义、公义、定理、几何变换等内容。解题策略:解决几何型综合题的要点是把代数知识与几何图形的性质以及计算与证明有机交融起来,进行分析、推理,从而达到解决问题的目的。

代数和几何型综合题是指以代数知识与几何知识综合运用的一类综合题。波及知识:代数与几何的重要知识点和多种数学思想方法。

【经典考题讲练】

例1.如图,已知矩形OABC中,OA=2,AB=4,双曲线yk(k>0)与矩形两x

边AB、BC分别交于E、F。

1)若E是AB的中点,求F点的坐标;

2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD

∽△DCF,并求k的值。

y

EAB

F

xOGDC

例1题图

标准文档适用文案

例2.(2014?十堰)已知抛物线C1:y=a(x+1)2﹣2的极点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的分析式.

(2)如图1,将抛物线C1向下平移2个单位后获得抛物线C2,且抛物线C2与直线AB订交

于C,D两点,求S△OAC:S△OAD的值.

(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右

侧部分(含极点)运动,直线m过点C和点E.问:能否存在直线m,使直线l,m与x轴围

成的三角形和直线l,m与y轴围成的三角形相像?若存在,求出直线m的分析式;若不存

在,说明原因.

分析:(1)由抛物线的极点式易得极点A坐标,把点B的坐标代入抛物线的分析式即可解决问题.(2)依据平移法例求出抛物线C2的分析式,用待定系数法求出直线AB的分析式,再经过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就能够求出S△OAC:S△OAD的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形状、地点跟着点G的变化而变化,故需对点G的地点进行讨论,借助于相像三角形的判断与性质、三角函数的增减性等知识求出符合条件的点G的坐标,从而求出相应的直线m的分析式.

标准文档适用文案

例3.(10分)(2015?桂林)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙

O的两条切线,C、D为切点.

(1)如图1,求⊙O的半径;

(2)如图1,若点E是BC的中点,连结PE,求PE的长度;

(3)如图2,若点M是BC边上随意一点(不含B、C),以点M为直角极点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.

分析:(1)利用切线的性质以及正方形的判断与性质得出⊙O的半径即可;

2)利用垂径定理得出OE⊥BC,∠OCE=45°,从而利用勾股定理得出即可;

3)在AB上截取BF=BM,利用(1)中所求,得出∠ECP=135°,再利用全等三角形的判断与性质得出即可.

【解答策略提炼】

1、代数综合题是以代数知识及代数变形为主的综合题。主要包含方程、函数、不等式等内容。解题策略:用到的数学思想方法有化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等。解代数综合题要注意方程、不等式和函数、统计等知识点之间的横向联系和数学思想方法、解题技巧的灵巧运用,要抓住题意,化整为零,层层深入,各个击破,从而解决问题。

2、几何综合题察看的图形种类多、条件隐晦,在察看方法上要注意从三角形、四边形、圆的定义、性质、判断来察看分析图形,经过找寻、分解、结构基本图形以发现图形特点;在思虑方法上分析发掘题目的隐含条件,注意结合代数知识与几何图形的性质思虑,不停的由已知想未知,为解决问题创办条件。

标准文档适用文案

【专项达标训练】

一、填空题

1.如图,在四边形ABCD中,AB=4,BC=7,CD=2,AD=x,则x的取值范围是。2.如图,在△ABC中,AB=AC,D在AB上,BD=AB,则∠A的取值范围是。AAxD4D2B7CBC第1题图第2题图3.在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是。如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连结EP并延伸,交AB的延伸线于点F,AP、BE订交于点O.以下结论:①EP均分∠CEB;②△EBP∽△EFB;③

△ABP∽△ECP;④AO?AP=OB2.此中正确的序号是.(把你以为正确的序

号都填上)

5.(2015南通)对于X的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间

(不包含-1和0),则a的取值范围是。

二、解答题

6.(2014牡丹江)(2014年黑龙江牡丹江)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点

A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

1)求线段CD的长;

2)设△CPQ的面积为S,求S与t之间的函数关系式,并确立在运动过程中能否存在某一

时刻t,使得S△:S△=9:100?若存在,求出t的值;若不存在,说明原因.CPQABC

(3)当t为什么值时,△CPQ为等腰三角形?

备用图1备用图2

标准文档适用文案

标准文档适用文案

7.(2013?连云港)如图,已知一次函数y=2x+2的图像与y轴交于点B,与反比率函数y=k1/x的图像的一个交点为A(1,m),过点B作AB的垂线BD,与反比率函数y=k2/x交于点D(n,-2).

1)求k1和k2的值;

2)若直线AB、BD分别交x轴于点C、E,试问在y轴上能否存在一个点F,使得△BDF∽△ACE?若存在,求出点F的坐标;若不存在,请说明原因.

标准文档适用文案

8.(2015温州)如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.

1)求证:DF∥AB;

2)若OC=CE,BF=22,求DE的长.

标准文档适用文案

(2015?海南)如图,二次函数y=ax2+bx+3的图象与x轴订交于点A(﹣3,0)、B(1,

0),与y轴订交于点C,点G是二次函数图象的极点,直线GC交x轴于点H(3,0),AD

平行GC交y轴于点D.

(1)求该二次函数的表达式;

(2)求证:四边形ACHD是正方形;

(3)如图2,点M(t,p)是该二次函数图象上的动点,而且点M在第二象限内,过点M

的直线y=kx交二次函数的图象于另一点N.

①若四边形ADCM的面积为S,恳求出S对于t的函数表达式,并写出t的取值范围;

②若△CMN的面积等于,恳求出此时①中S的值.

标准文档适用文案

【基础要点轮动】

一.选择题

(2013.山西)解分式方程

2+x+2=3时,去分母后变形为()x-11-x

A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3(1-x)D.2-(x+2)=3(x-1)

2.

A.2B.C.D.

3.以下交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论