天津鸿志中学2023年高二数学理下学期期末试卷含解析_第1页
天津鸿志中学2023年高二数学理下学期期末试卷含解析_第2页
天津鸿志中学2023年高二数学理下学期期末试卷含解析_第3页
天津鸿志中学2023年高二数学理下学期期末试卷含解析_第4页
天津鸿志中学2023年高二数学理下学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津鸿志中学2023年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;

④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是(

A.①和②

B.②和③

C.③和④

D.②和④参考答案:D2.在数列中,则的值为()A.49B.

50C.51

D.52

参考答案:D略3.设函数f(x)=+lnx,则()A.为f(x)的极小值点 B.x=2为f(x)的极大值点C.为f(x)的极大值点 D.x=2为f(x)的极小值点参考答案:D【考点】利用导数研究函数的极值.【分析】求导数f′(x),令f′(x)=0,得x=2可判断在2左右两侧导数符号,由极值点的定义可得结论.【解答】解:f′(x)=﹣=,当0<x<2时,f′(x)<0;当x>2时f′(x)>0,所以x=2为f(x)的极小值点,故选:D.4.直线在轴上的截距是,而且它的倾斜角是直线的倾斜角的二倍,则(

)

A.

B.

C.

D.参考答案:B略5.已知函数f(x)=x+sinπx﹣3,则的值为()A.4029 B.﹣4029 C.8058 D.﹣8058参考答案:D【考点】函数的值.【分析】根据式子特点,判断当x1+x2=2时,f(x1)+f(x2)=﹣4,即可得到结论.【解答】解:若x1+x2=2时,即x2=2﹣x1时,有f(x1)+f(x2)=x1+sinπx1﹣3+2﹣x1+sin(2π﹣πx1)﹣3=2﹣6=﹣4,即恒有f(x1)+f(x2)=﹣4,且f(1)=﹣2,则=2014[f()+f()]=2014×(﹣4)﹣2=﹣8058,故选:D【点评】本题主要考查函数值的计算,根据条件得到函数取值的规律性是解决本题的关键.6.已知直线,圆,圆,则(

)A.l必与圆M相切,l不可能与圆N相交B.l必与圆M相交,l不可能与圆N相切C.l必与圆M相切,l不可能与圆N相切D.l必与圆M相交,l不可能与圆N相离参考答案:D直线的过定点,代入圆,得,即点在圆的内部,故必与圆相交,而点到圆的圆心的距离等于圆的半径3,故点在圆上,即不可能与圆相离.故选D7.从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于(

)A.2个球不都是红球的概率 B.2个球都是红球的概率C.至少有1个红球的概率 D.2个球中恰好有1个红球的概率参考答案:C分析:根据题意,易得从甲袋中摸出的球不是红球与从乙袋中摸出的球不是红球的概率,进而以此分析选项:对于A,2个球都不是红球,即从甲袋中摸出的球不是红球与从乙袋中摸出的球不是红球同时发生,由相互独立事件的概率公式可得其概率,对于B,2个球都是红球,即从甲袋中摸出的球是红球与从乙袋中摸出的球是红球同时发生,由相互独立事件的概率公式可得其概率,对于C、至少有1个红球与两球都不是红球为对立事件,由对立事件的概率性质可得其概率,对于D,从甲、乙两袋中摸球有三种情况,即2个球都不是红球,2个球都是红球,2个球中恰有1个红球,由互斥事件的概率性质,可得2个球中恰有1个红球的概率,将求得的概率与比较,即可得答案.解答:解:根据题意,从甲袋中摸出1个红球的概率为,则摸出的球不是红球的概率为1-=,从乙袋中摸出1个红球的概率为,则摸出的球不是红球的概率为1-=,依次分析选项,对于A、2个球都不是红球,即从甲袋中摸出的球不是红球与从乙袋中摸出的球不是红球同时发生,则其概率为×=,不合题意;对于B、2个球都是红球,即从甲袋中摸出的球是红球与从乙袋中摸出的球是红球同时发生,则其概率为×=,不合题意;对于C、至少有1个红球与两球都不是红球为对立事件,则其概率为1-=,符合题意;对于D、由A可得,2个球都不是红球的概率为,由B可得2个球都是红球的概率为,则2个球中恰有1个红球的概率为1--=,不合题意;故选C.8.已知椭圆+=1(a>b>0)的离心率e=,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根x1,x2,则点P(x1,x2)(

)A.必在圆x2+)y2=2上 B.必在圆x2+y2=2内C.必在圆x2+y2=2外 D.以上三种情况都有可能参考答案:B【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意可求得c=a,b=a,从而可求得x1和x2,利用韦达定理可求得x12+x22的值,从而可判断点P与圆x2+y2=2的关系.【解答】解:∵椭圆的离心率e==,∴c=a,b=a,∴ax2+bx﹣c=ax2+ax﹣a=0,∵a≠0,∴x2+x﹣=0,又该方程两个实根分别为x1和x2,∴x1+x2=﹣,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=+1<2.∴点P在圆x2+y2=2的内部.故选B.【点评】本题考查椭圆的简单性质,考查点与圆的位置关系,求得c,b与a的关系是关键,属于中档题.9..下列直线中,与函数的图象在处的切线平行的是(

)A. B.C. D.参考答案:B,,∴∴函数的图象在处的切线方程为与其平行的直线可以为:故选:B点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.10.设,集合是奇数集,集合是偶数集.若命题,则()A. B.C. D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.

四棱锥的三视图如右图所示,四棱锥的五个顶点都在一个球面上,、分别是棱、的中点,直线被球面所截得的线段长为,则该球表面积为

.参考答案:12.设函数,,对任意的,都有成立,则实数a的取值范围是______.参考答案:【分析】首先求得函数在区间上的最大值,然后分离参数,利用导函数求最值即可确定实数的取值范围.【详解】∵在上恒成立,∴当时,取最大值1,∵对任意的,都有成立,∴在上恒成立,即在上恒成立,令,则,,∵在上恒成立,∴在上为减函数,∵当时,,故当时,取最大值1,故,故答案为:【点睛】本题考查的知识点是函数恒成立问题,利用导数研究函数的单调性,利用导数研究函数的最值,难度中档.13.在约束条件下,目标函数z=2x+3y的最小值为,最大值为.参考答案:﹣18,30略14.函数在区间上的最大值与最小值分别为、,则

.参考答案:3215.已知幂函数的图象过点,则__________。参考答案:16.已知直线x+y﹣2=0与圆x2+y2=r2(r>0)相交于A、B两点,O为坐标原点,若∠AOB=120°,则r=

.参考答案:2【考点】直线与圆的位置关系.【分析】由已知得圆心O(0,0)到直线x+﹣2=0的距离d等于半径r的一半,由此能求出半径r.【解答】解:∵直线x+y﹣2=0与圆x2+y2=r2(r>0)相交于A、B两点,O为坐标原点,若∠AOB=120°,∴圆心O(0,0)到直线x+﹣2=0的距离d等于半径r的一半,即d=,解得r=2.故答案为:2.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.17.i为虚数单位,设复数,在复平面内对应的点关于原点对称,若,则______.参考答案:【分析】直接利用复数对应的点的坐标,求出对称点的坐标,即可得到复数.【详解】解:设复数在复平面内对应的点关于原点对称,复数的实部相反,虚部相反,=-20+18i,所以=20-18i.故答案为:20-18i.【点睛】本题考查复数的几何意义,对称点的坐标的求法,基本知识的应用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C(1)求曲线C的方程.(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程参考答案:解:(1)由题意知,P到F的距离等于P到的距离,所以P的轨迹C是以F为焦点,为准线的抛物线,它的方程为

…………

5分(2)设则

…………7分由AB为圆M的直径知,…………9分故直线的斜率为…………10分直线AB的方程为即

…………

12分略19.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知(1)求C;(2)若,△ABC的面积为,求△ABC的周长.参考答案:(1);(2).【分析】(1)利用正弦定理化简边角关系式可得,根据三角形为锐角三角形可求得;(2)利用三角形面积公式构造方程求得;利用余弦定理构造出关于的方程,解方程求得,从而得到周长.【详解】(1)由正弦定理得:

(2)由余弦定理得:即:又,解得:

的周长为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用问题,属于常考题型.20.从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:(1)求这1000件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布,其中近似为样本平均数近似为样本方差.(i)利用该正态分布,求;(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出10件这种产品,记Y表示这件产品的利润,求.附:,若,则.参考答案:(1)200,150;(2)(i);(ⅱ)280.【分析】(1)直接利用样本平均数和样本方差公式计算得到答案.(2)(i)先判断,则(ⅱ)Ⅹ表示100件产品的正品数,题意得,计算,再计算【详解】(1)由题意得.∴,即样本平均数为200,样本方差为150.(2)(i)由(1)可知,,∴(ⅱ)设Ⅹ表示100件产品的正品数,题意得,∴,∴.【点睛】本题考查了数学期望,方差的计算,意在考查学生的计算能力和应用能力.21.求曲线y=x2+3x+1求过点(2,5)的切线的方程.参考答案:解:∵y=x2+3x+1,∴f'(x)=2x+3,当x=2时,f'(2)=7得切线的斜率为7,所以k=7;所以曲线在点(2,5)处的切线方程为:y﹣5=7×(x﹣2),即7x﹣y+8=0.故切线方程为:7x﹣y+8=0.略22.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案:【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论