版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是()A. B. C. D.2.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.3.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正确的结论有()A.4个 B.3个 C.2个 D.1个4.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积()A.保持不变 B.逐渐增大 C.逐渐减小 D.无法确定5.一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.506.在平面直角坐标系中,抛物线与轴交于点,与轴交于点,则的面积是()A.6 B.10 C.12 D.157.如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50 B.60 C.70 D.808.在△ABC中,∠C=90°,∠B=30°,则cosA的值是()A. B. C. D.19.已知两个相似三角形的相似比为2∶3,较小三角形面积为12平方厘米,那么较大三角形面积为()A.18平方厘米 B.8平方厘米 C.27平方厘米 D.平方厘米10.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有()A.①②③ B.②③④ C.①②④ D.①③④二、填空题(每小题3分,共24分)11.已知⊙O的周长等于6πcm,则它的内接正六边形面积为_____cm212.在中,,,点D在边AB上,且,点E在边AC上,当________时,以A、D、E为顶点的三角形与相似.13.抛物线y=x2-2x+3,当-2≤x≤3时,y的取值范围是__________14.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.15.在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为____;(2)当时,=_______16.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.17.若是方程的一个根,则式子的值为__________.18.方程的解是_____.三、解答题(共66分)19.(10分)如图,已知抛物线经过,及原点,顶点为.(1)求抛物线的函数解析式;(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.20.(6分)作出函数y=2x2的图象,并根据图象回答下列问题:(1)列表:x……y……(2)在下面给出的正方形网格中建立适当的平面直角坐标系,描出列表中的各点,并画出函数y=2x2的图象:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是(直接写出结论).21.(6分)如图,二次函数(a0)与x轴交于A、C两点,与y轴交于点B,P为抛物线的顶点,连接AB,已知OA:OC=1:3.(1)求A、C两点坐标;(2)过点B作BD∥x轴交抛物线于D,过点P作PE∥AB交x轴于E,连接DE,①求E坐标;②若tan∠BPM=,求抛物线的解析式.22.(8分)如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.(1)试求、的值,并写出该二次函数表达式;(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?23.(8分)如图,已知,点、坐标分别为、.(1)把绕原点顺时针旋转得,画出旋转后的;(2)在(1)的条件下,求点旋转到点经过的路径的长.24.(8分)如图,半圆的直径,将半圆绕点顺时针旋转得到半圆,半圆与交于点.(1)求的长;(2)求图中阴影部分的面积.(结果保留)25.(10分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD=cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)26.(10分)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨;(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2、A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、A【详解】如图,连接CO,DO,∵MC与⊙O相切于点C,∴∠MCO=90°,在△MCO与△MDO中,,∴△MCO≌△MDO(SSS),∴∠MCO=∠MDO=90°,∠CMO=∠DMO,∴MD与⊙O相切,故①正确;在△ACM与△ADM中,,∴△ACM≌△ADM(SAS),∴AC=AD,∴MC=MD=AC=AD,∴四边形ACMD是菱形,故②正确;如图连接BC,∵AC=MC,∴∠CAB=∠CMO,又∵AB为⊙O的直径,∴∠ACB=90°,在△ACB与△MCO中,,∴△ACB≌△MCO(SAS),∴AB=MO,故③正确;∵△ACB≌△MCO,∴BC=OC,∴BC=OC=OB,∴∠COB=60°,∵∠MCO=90°,∴∠CMO=30°,又∵四边形ACMD是菱形,∴∠CMD=60°,∴∠ADM=120°,故④正确;故正确的有4个.故选A.4、A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变.【详解】解:依题意有矩形OAPB的面积=2×|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变.
故选:A.【点睛】本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.5、C【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.6、A【分析】根据题意,先求出点A、B、C的坐标,然后根据三角形的面积公式,即可求出答案.【详解】解:∵抛物线与轴交于点,∴令,则,解得:,,∴点A为(1,0),点B为(,0),令,则,∴点C的坐标为:(0,);∴AB=4,OC=3,∴的面积是:=;故选:A.【点睛】本题考查了二次函数与坐标轴的交点,解题的关键是熟练掌握二次函数的性质,求出抛物线与坐标轴的交点.7、B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:150=160:(160−x),解得:x=60.故选B.【点睛】本题考查相似三角形的判定与性质,解题突破口是过E作EF⊥CG于F.8、A【分析】根据特殊角三角函数值,可得答案.【详解】解:∵△ABC中,∠C=90°,∠B=30°,∴∠A=90°-30°=60°.cosA=cos60°=.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角三角函数值是解题关键.9、C【分析】根据相似三角形面积比等于相似比的平方即可解题【详解】∵相似三角形面积比等于相似比的平方故选C【点睛】本题考查相似三角形的性质,根据根据相似三角形面积比等于相似比的平方列出式子即可10、C【解析】如图(见解析),过点E作,根据平行线的性质、角平分线的性质、相似三角形的判定定理与性质逐个判断即可.【详解】如图,过点E作,即ED平分,EC平分,即,故①正确又ED平分,EC平分,点E是AB的中点,故②正确在和中,同理可证:,故④正确又,即在中,,故③错误综上,正确的有①②④故选:C.【点睛】本题考查了平行线的性质、角平分线的性质、相似三角形的判定定理与性质,通过作辅助线,构造垂线和两组全等的三角形是解题关键.二、填空题(每小题3分,共24分)11、【分析】首先过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:如图,过点O作OH⊥AB于点H,连接OA,OB,∴AH=AB,∵⊙O的周长等于6πcm,∴⊙O的半径为:3cm,∵∠AOB=×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∴AH=cm,∴OH==,∴S正六边形ABCDEF=6S△OAB=6××3×=,故答案为:.【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键.12、【解析】当时,∵∠A=∠A,∴△AED∽△ABC,此时AE=;当时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=;故答案是:.13、【分析】先把一般式化为顶点式,根据二次函数的最值,以及对称性,即可求出y的最大值和最小值,即可得到取值范围.【详解】解:∵,又∵,∴当时,抛物线有最小值y=2;∵抛物线的对称轴为:,∴当时,抛物线取到最大值,最大值为:;∴y的取值范围是:;故答案为:.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.14、1【解析】试题分析:根据折线统计图可知6名学生的体育成绩为;24,24,1,1,1,30,所以这组数据的中位数是1.考点:折线统计图、中位数.15、16【分析】(1)设A(m,km),B(n,kn),联立解析式,利用根与系数的关系建立之间的关系,列出面积函数关系式,利用二次函数的性质求解最小值即可;(2)先证明平分得到,把转化为,利用两点间的距离公式再次转化,从而可得答案.【详解】解:(1)如图,设A(m,km),B(n,kn),其中m1,n1.得:即,∴∴当k=1时,△PAB面积有最小值,最小值为故答案为.(2)设设A(m,km),B(n,kn),其中m1,n1.得:即,∴设直线PA的解析式为y=ax+b,将P(1,4),A(m,km)代入得:,解得:,∴令y=1,得∴直线PA与x轴的交点坐标为.同理可得,直线PB的解析式为直线PB与x轴交点坐标为.∵∴直线PA、PB与x轴的交点关于y轴对称,即直线PA、PB关于y轴对称.平分,到的距离相等,而∴,过作轴于,过作轴于,则∴∴∵∴∴∴故答案为:【点睛】本题是代数几何综合题,难度很大.考查了二次函数与一次函数的基本性质,一元二次方程的根与系数的关系.相似三角形的判定与性质,角平分线的判定与性质,解答中首先得到基本结论,即PA、PB的对称性,正确解决本题的关键是打好数学基础,将平时所学知识融会贯通、灵活运用.16、【分析】根据反比例函数的性质:当k>0时函数图像的每一支上,y随x的增大而减少;当k<0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k<0即可.【详解】因为反比例函数的图象在每一象限内,y随x的增大而增大,所以k<0故答案为:【点睛】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键.17、1【分析】将a代入方程中得到,将其整体代入中,进而求解.【详解】由题意知,,即,∴,故答案为:1.【点睛】本题考查了方程的根,求代数式的值,学会运用整体代入的思想是解题的关键.18、x1=2,x2=﹣1【解析】解:方程两边平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.经检验,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.三、解答题(共66分)19、(1);(2)点的坐标为:(1,3);(3)存在.符合条件的点有两个,分别是或(3,15).【分析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;
(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.【详解】解:(1)设抛物线的解析式为,将点,,代入,可得:,解得:.故函数解析式为:;(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,
由四边形AODE可知D在对称轴直线x=-1右侧,
则D横坐标为1,代入抛物线解析式得D(1,3).
综上可得点D的坐标为:(1,3);(3)存在.理由如下:如图:,,根据勾股定理得:,,,,是直角三角形,,假设存在点,使以,,为顶点的三角形与相似,设,由题意知,,且,①若,则,即,得:,(舍去).当时,,即,②若,则,即:,得:,(舍去),当时,,即.故符合条件的点有两个,分别是或(3,15).【点睛】本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大.20、(1)见解析;(2)见解析;(3)【分析】(1)根据函数的解析式,取x,y的值,即可.(2)描点、连线,画出的函数图象即可;(3)结合函数图象即可求解.【详解】(1)列表:x…﹣2﹣1012…y…82028…(2)画出函数y=2x2的图象如图:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是,故答案为:.21、(1)A(-1,0),C(3,0);(2)①E(-,0);②原函数解析式为:.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以设A(-m,0),C(3m,0),结合对称轴即可求出结果;(2)①过点P作PM⊥x轴于点M,连接PE,DE,先证明△ABO△EPM得到,找出OE=,再根据A(-1,0)代入解析式得:3a+c=0,c=-3a,即可求出OE的长,则坐标即可找到;②设PM交BD于点N;根据点P(1,c-a),BN‖AC,PM⊥x轴表示出PN=-a,再由tan∠BPM=求出a,结合(1)知道c,即可知道函数解析式.【详解】(1)∵二次函数为:(a<0),∴对称轴为,过点P作PM⊥x轴于点M,则M(1,0),M为AC中点,又OA:OC=1:3,设A(-m,0),C(3m,0),∴,解得:m=1,∴A(-1,0),C(3,0),(2)①做图如下:∵PE∥AB,∴∠BAO=∠PEM,又∠AOB=∠EMP,∴△ABO△EPM,∴,由(1)知:A(-1,0),C(3,0),M(1,0),B(0,c),P(1,c-a),∴,∴OE=,将A(-1,0)代入解析式得:3a+c=0,∴c=-3a,∴,∴E(-,0);②设PM交BD于点N;∵(a<0),∴x=1时,y=c-a,即点P(1,c-a),∵BN‖AC,PM⊥x轴∴NM=BO=c,BN=OM=1,∴PN=-a,∵tan∠BPM=,∴tan∠BPM=,∴PN=,即a=-,由(1)知c=-3a,∴c=;∴原函数解析式为:.【点睛】此题考查了抛物线与x轴的交点;二次函数的性质,待定系数法求二次函数解析式.22、(1),;(2)①当点运动到距离点个单位长度处,有;②当点运动到距离点个单位处时,四边形面积最小,最小值为.【分析】(1)根据一次函数解析式求出A和C的坐标,再由△ABC是等腰三角形可求出点B的坐标,根据平行四边形的性质求出点D的坐标,利用待定系数法即可得出二次函数的表达式;(2)①设点P运动了t秒,PQ⊥AC,进而求出AP、CQ和AQ的值,再由△APQ∽△CAO,利用对应边成比例可求出t的值,即可得出答案;②将问题化简为△APQ的面积的最大值,根据几何关系列出关于时间的二次函数,根据二次函数的性质,求出函数的最大值,即求出△APQ的面积的最大值,进而求出四边形PDCQ面积的最小值.【详解】解:(1)由,令,得,所以点;令,得,所以点,∵是以为底边的等腰三角形,∴点坐标为,又∵四边形是平行四边形,∴点坐标为,将点、点代入二次函数,可得,解得:,故该二次函数解析式为:.(2)∵,,∴.①设点运动了秒时,,此时,,,∵,∴,,∴,∴,即,解得:.即当点运动到距离点个单位长度处,有.②∵,且,∴当的面积最大时,四边形的面积最小,当动点运动秒时,,,,设底边上的高为,作于点,由可得:,解得:,∴,∴当时,达到最大值,此时,故当点运动到距离点个单位处时,四边形面积最小,最小值为.【点睛】本题考查的是二次函数的综合题,难度系数较大,解题关键是将四边形PDCQ面积的最小值转化为△APQ的面积的最大值并根据题意列出的函数关系式.23、(1)答案见解析;(2).【分析】(1)根据题意画出图形即可;(2)求出OA的长,再根据弧长公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国民用航空飞行学院《汉语方言学》2023-2024学年第一学期期末试卷
- 郑州理工职业学院《公路施工组织与概预算》2023-2024学年第一学期期末试卷
- 小学物品领用制度
- 浙江传媒学院《建筑技术的设计》2023-2024学年第一学期期末试卷
- 漳州城市职业学院《摄影技术与训练》2023-2024学年第一学期期末试卷
- 缺陷管理与生产效率提升措施
- 双十二家居设计解析
- 专业基础-房地产经纪人《专业基础》点睛提分卷1
- 房地产经纪综合能力-《房地产经济综合能力》押题密卷
- 家长会学生发言稿 马晓丽
- 公车租赁合同协议书
- 家居保洁课件
- 换电站(充电桩)安全风险告知
- 上海上海市皮肤病医院工作人员招聘笔试历年典型考题及考点附答案解析
- DL-T5024-2020电力工程地基处理技术规程
- DZ∕T 0153-2014 物化探工程测量规范(正式版)
- 商业空间设计(高职环境艺术设计专业和室内设计专业)全套教学课件
- 环保安全部年度安全环保工作总结模板
- 初中数学要背诵记忆知识点(概念+公式)
- 旅游业务年度回顾与展望
- 纳米药物载体课件
评论
0/150
提交评论