版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年湖南省永州市普通高校对口单招高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.已知作用在简支梁上的力F与力偶矩M=Fl,不计杆件自重和接触处摩擦,则以下关于固定铰链支座A的约束反力表述正确的是()。
A.图(a)与图(b)相同B.图(b)与图(c)相同C.三者都相同D.三者都不相同
2.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
3.
4.
A.仅有水平渐近线
B.既有水平渐近线,又有铅直渐近线
C.仅有铅直渐近线
D.既无水平渐近线,又无铅直渐近线
5.若x0为f(x)的极值点,则().A.A.f(x0)必定存在,且f(x0)=0
B.f(x0)必定存在,但f(x0)不-定等于零
C.f(x0)不存在或f(x0)=0
D.f(x0)必定不存在
6.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
7.平面的位置关系为()。A.垂直B.斜交C.平行D.重合
8.A.A.1
B.
C.
D.1n2
9.A.A.
B.
C.
D.
10.设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)().
A.不存在零点
B.存在唯一零点
C.存在极大值点
D.存在极小值点
11.设平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0则平面π1与π2的位置关系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合
12.
13.
A.-1/2
B.0
C.1/2
D.1
14.
15.
16.()A.A.条件收敛
B.绝对收敛
C.发散
D.收敛性与k有关
17.
18.
A.
B.1
C.2
D.+∞
19.
20.下列各式中正确的是
A.A.
B.B.
C.C.
D.D.
二、填空题(20题)21.
22.
23.
24.
25.
26.
27.
28.y″+5y′=0的特征方程为——.
29.
30.
31.
32.不定积分=______.
33.
34.
35.
36.
37.
38.
39.
40.
三、计算题(20题)41.
42.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
43.
44.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
45.
46.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
47.求曲线在点(1,3)处的切线方程.
48.
49.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
50.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
51.当x一0时f(x)与sin2x是等价无穷小量,则
52.
53.求函数f(x)=x3-3x+1的单调区间和极值.
54.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
55.求微分方程y"-4y'+4y=e-2x的通解.
56.
57.
58.求微分方程的通解.
59.将f(x)=e-2X展开为x的幂级数.
60.证明:
四、解答题(10题)61.
62.
63.求∫xcosx2dx。
64.
65.
66.
67.
68.
69.求由曲线xy=1及直线y=x,y=2所围图形的面积A。
70.
五、高等数学(0题)71.若函数f(x)的导函数为sinx,则f(x)的一个原函数是__________。
六、解答题(0题)72.求fe-2xdx。
参考答案
1.D
2.A本题考查的知识点为不定积分运算.
可知应选A.
3.B
4.A
5.C本题考查的知识点为函数极值点的性质.
若x0为函数y=f(x)的极值点,则可能出现两种情形:
(1)f(x)在点x0处不可导,如y=|x|,在点x0=0处f(x)不可导,但是点x0=0为f(x)=|x|的极值点.
(2)f(x)在点x0可导,则由极值的必要条件可知,必定有f(x0)=0.
从题目的选项可知应选C.
本题常见的错误是选A.其原因是考生将极值的必要条件:“若f(x)在点x0可导,且x0为f(x)的极值点,则必有f(x0)=0”认为是极值的充分必要条件.
6.A
7.A本题考查的知识点为两平面的关系。两平面的关系可由两平面的法向量,n1,n2间的关系确定。若n1⊥n2,则两平面必定垂直.若时,两平面平行;
当时,两平面重合。若n1与n2既不垂直,也不平行,则两平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,应选A。
8.C本题考查的知识点为定积分运算.
因此选C.
9.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故选D。
10.B由于f(x)在[a,b]上连续f(z)·fb)<0,由闭区间上连续函数的零点定理可知,y=f(x)在(a,b)内至少存在一个零点.又由于f(x)>0,可知f(x)在(a,b)内单调增加,因此f(x)在(a,b)内如果有零点,则至多存在一个.
综合上述f(x)在(a,b)内存在唯一零点,故选B.
11.A平面π1的法线向量n1=(2,1,4),平面π2的法线向量n2=(2,-8,1),n1*n1=0。可知两平面垂直,因此选A。
12.D
13.B
14.B
15.A
16.A
17.A解析:
18.C
19.C解析:
20.B本题考查了定积分的性质的知识点。
对于选项A,当0<x<1时,x3<x2,则。对于选项B,当1<x<2时,Inx>(Inx)2,则。对于选项C,对于选读D,不成立,因为当x=0时,1/x无意义。
21.
22.
23.
24.2/52/5解析:
25.
26.
27.
28.由特征方程的定义可知,所给方程的特征方程为
29.11解析:
30.0<k≤1
31.
本题考查的知识点为连续性与极限的关系,左极限、右极限与极限的关系.
32.
;本题考查的知识点为不定积分的换元积分法.
33.[01)∪(1+∞)
34.12x
35.F(sinx)+C
36.
37.
38.F(sinx)+C.
本题考查的知识点为不定积分的换元法.
39.
解析:
40.
41.
42.由二重积分物理意义知
43.
则
44.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
45.由一阶线性微分方程通解公式有
46.
47.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
48.
49.
50.
列表:
说明
51.由等价无穷小量的定义可知
52.
53.函数的定义域为
注意
54.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《激光的基本技术》课件
- 养老机构入住长者心理咨询、精神支持服务流程1-1-1
- 水痘脑炎病因介绍
- (高考英语作文炼句)第18篇译文老师笔记
- 开题报告:智能现场工程师培养路径实证研究
- 开题报告:支持个性化学习的高校混合教学学生画像构建研究
- 开题报告:义务教育阶段学生作业质量监测与优化研究
- 某电厂扩建工程施工组织设计
- 开题报告:新质生产力背景下应用型高校数字化转型策略研究-以湖北省民办高校为实证对象
- 《货币资金严静》课件
- 民用机场工程造价控制的难点浅析
- 医疗机构临床用血管理的通知
- 化工原理课程设计--用水冷却乙酸甲酯列管式换热器设计
- 诺基亚LTE基站简介
- 电力工程监理项目部标准技术清单汇编(光伏及风电工程)
- 换电站设计说明书
- EORTC生命质量测定量表QLQ-C30(V3.0).doc
- 医学交流课件:特布他林雾化吸入治疗 ——药理学视角
- 赴日签证申请表1
- 2017标准施工招标文件范本
- 起搏器培训课件:5318分析仪的使用
评论
0/150
提交评论