2023年高考数学一轮复习(艺考)第01讲 分类加法计数原理与分步乘法计数原理 高频考点(原卷版)_第1页
2023年高考数学一轮复习(艺考)第01讲 分类加法计数原理与分步乘法计数原理 高频考点(原卷版)_第2页
2023年高考数学一轮复习(艺考)第01讲 分类加法计数原理与分步乘法计数原理 高频考点(原卷版)_第3页
2023年高考数学一轮复习(艺考)第01讲 分类加法计数原理与分步乘法计数原理 高频考点(原卷版)_第4页
2023年高考数学一轮复习(艺考)第01讲 分类加法计数原理与分步乘法计数原理 高频考点(原卷版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

文档来源网络仅供参考侵权删除第01讲分类加法计数原理与分步乘法计数原理(精讲)目录第一部分:知识点精准记忆第二部分:典型例题剖析题型一:分类加法计数原理的应用题型二:分步乘法计数原理题型三:两个计数原理的综合应用角度1:与数字有关的问题角度2:与几何有关的问题角度3:涂色问题第一部分:知识点精准记忆第一部分:知识点精准记忆知识点一:分类加法计数原理完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,那么完成这件事共有种不同的方法.

知识点二:分步乘法计数原理完成一件事需要两个步骤,做第1步有种不同的方法,做第2步有种不同的方法,那么完成这件事共有种不同的方法.知识点三:分类加法计数原理和分布乘法计数原理推广(1)完成一件事有类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,……,在第类方案中有种不同的方法,那么完成这件事共有种不同的方法.(2)完成一件事需要个步骤,做第1步有种不同的方法,做第2步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.第二部分:典型例题剖析第二部分:典型例题剖析题型一:分类加法计数原理的应用典型例题例题1.(2022·全国·高二单元测试)若一个、均为非负整数的有序数对,在做的加法时,各位均不进位,则称为“简单的有序实数对”,称为有序实数对之值,则值为2004的“简单的有序实数对”的个数是(

).A.10 B.15 C.20 D.25例题2.(2022·全国·高二课时练习)为了方便广大市民接种新冠疫苗,提高新冠疫苗接种率,某区卫健委在城区设立了11个接种点,在乡镇设立了19个接种点.某市民为了在同一接种点顺利完成新冠疫苗接种,则不同接种点的选法共有(

)A.11种 B.19种 C.30种 D.209种例题3.(2022·吉林油田第十一中学高二期末)书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架上任取1本书,不同的取法有__________种.同类题型归类练1.(2022·广东清远·高二期末)从甲地出发前往乙地,一天中有4趟汽车、3趟火车和1趟航班可供选择.某人某天要从甲地出发,去乙地旅游,则所有不同走法的种数是(

)A.16 B.15 C.12 D.82.(2022·浙江省杭州学军中学高三期中)某校安排5名同学去A,B,C,D四个爱国主义教育基地学习,每人去一个基地,每个基地至少安排一人,则甲同学被安排到A基地的排法总数为(

)A.24 B.36 C.60 D.2403.(2022·湖北·武汉市武钢三中高三阶段练习)某校举行科技文化艺术节活动,学生会准备安排6名同学到两个不同社团开展活动,要求每个社团至少安排两人,其中,两人不能分在同一个社团,则不同的安排方案数是(

)A.56 B.28 C.24 D.12题型二:分步乘法计数原理典型例题例题1.(2022·全国·高三专题练习)如图所示,用不同的五种颜色分别为,,,,五部分着色,相邻部分不能用同一种颜色,但同一种颜色可以反复使用,也可不使用,则复合这些要求的不同着色的方法共有(

)A.500种 B.520种 C.540种 D.560种例题2.(2022·四川·成都市第二十中学校高三期中)将3名医护人员,6名志愿者分成3个小组,分别安排到甲、乙、丙三个新增便民核酸采样点参加核酸检测相关工作,每个小组由1名医护人员和2名志愿者组成,则不同的安排方案共有(

)A.90种 B.540种 C.1620种 D.3240种例题3.(2022·河北邢台·高二阶段练习)回文联是我国对联中的一种,用回文形式写成的对联,既可顺读,也可倒读,不仅意思不变,而且颇具趣味,相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成3位“回文数”的个数为(

)A.30 B.36 C.360 D.1296例题4.(2022·全国·高三专题练习)某学校举行校庆文艺晚会,已知节目单中共有七个节目,为了活跃现场气氛,主办方特地邀请了三位老校友演唱经典歌曲,并要将这三个不同节目添入节目单,而不改变原来的节目顺序,则不同的安排方式有________种.例题5.(2022·上海徐汇·高二期末)将展开后有______项.同类题型归类练1.(2022·全国·高三专题练习)为了丰富学生的课余生活,某学校开设了篮球、书法、美术、吉他、舞蹈、击剑共六门活动课程,甲、乙、丙3名同学从中各自任选一门活动课程参加,则这3名学生所选活动课程不全相同的选法有(

)A.120种 B.150种 C.210种 D.216种2.(2022·青海·大通回族土族自治县教学研究室二模(文))甲、乙、丙共三名学生报名参加夏季运动会,每人报名一个项目,目前有100米短跑和3000米长跑这两个项目可供选择,则他们报名同一个项目的概率为(

)A. B.C. D.3.(2022·河北·邢台市第二中学高二阶段练习)小张去工作室需要通过三重门,他必须问管理员要到每重门的钥匙才能到达工作室.第一重门的钥匙有3把(每把颜色不同),第二重门的钥匙有4把(每把颜色不同),第三重门的钥匙有3把(每把颜色不同),管理员要求他从这10把钥匙中取3把,则他能到达工作室的不同的取法共有(

)A.10种 B.24种 C.36种 D.120种4.(2022·北京通州·高二期中)已知集合,.现从集合A中取一个元素作为点P的横坐标,从集合B中取一个元素作为点P的纵坐标,则位于第四象限的点P有(

)A.16个 B.12个 C.9个 D.6个5.(2022·广东·大埔县田家炳实验中学高二阶段练习)为响应国家“节约粮食”的号召,某同学决定在某食堂提供的3种主食、4种素菜、2种大荤、3种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有______种.题型三:两个计数原理的综合应用角度1:与数字有关的问题典型例题例题1.(2022·天津·南开中学高二期中)用0,1,2,3,4,5可以组成无重复数字且能被2整除的三位数的个数是(

)A.50 B.52 C.54 D.56例题2.(2022·浙江·效实中学高二期中)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有A.36个 B.24个 C.18个 D.6个例题3.(2022·重庆·高二阶段练习)由数字组成无重复数字的五位数.(1)一共可以组成多少个五位偶数?(2)在组成的所有五位数中,比32145大的五位数有几个?例题4.(2022·江苏连云港·高二期中)用0,1,2,3,…,9十个数字可组成多少个不同的(1)三位数?(2)无重复数字的三位数?(3)小于500且没有重复数字的自然数?同类题型归类练1.(2022·吉林油田第十一中学高二期末)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.288个 B.240个 C.144个 D.126个2.(2022·全国·高三专题练习)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个 B.15个C.12个 D.9个3.(2022·全国·高二课时练习)设集合A={0,1,2,3,4,5,6,7},如果方程x2-mx-n=0(m,n∈A)至少有一个根x0∈A,就称方程为合格方程,则合格方程的个数为()A.13 B.15C.17 D.194.(2022·全国·高二课时练习)已知集合,,从A中取一个数作为十位数字,从B中取一个数作为个位数字,能组成______个不同的两位数,能组成______个十位数字小于个位数字的两位数.角度2:与几何有关的问题典型例题例题1.(2022·全国·高三专题练习)已知分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯,是单纯由碳原子结合形成的稳定分子,它具有60个顶点和若干个面,.各个面的形状为正五边形或正六边形,结构如图.已知其中正六边形的面为20个,则正五边形的面为(

)个.A.10 B.12C.16 D.20例题2.(2022·全国·高二期末)从正十五边形的顶点中选出3个构成钝角三角形,则不同的选法有(

).A.105种 B.225种 C.315种 D.420种同类题型归类练1.(2022·全国·高三专题练习)若一个正方体绕着某直线旋转不到一周后能与自身重合,那么这样的直线的条数为(

)A. B. C. D.2.(2022·全国·高三专题练习)一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则()A.至多能剪成19块“L”形骨牌B.至多能剪成20块“L”形骨牌C.最多能剪成21块“L”形骨牌D.前三个答案都不对3.(2022·上海交大附中高二期中)正方体的8个顶点中,选取4个共面的顶点,有______种不同选法角度3:涂色问题典型例题例题1.(2022·吉林·长春吉大附中实验学校高二阶段练习)用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同的颜色,不同的涂色方法共有(

)A.24种 B.36种 C.48种 D.72种例题2.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)用5种不同颜色给右图所示的五个圆环涂色,要求相交的两个圆环不能涂相同的颜色,共有(

)种不同的涂色方案.A.1140 B.1520 C.1400 D.1280例题3.(2022·内蒙古·赤峰二中高二阶段练习(理))如图,一花坛分成1,2,3,4,5五个区域,现有4种不同的花供选种,要求在每个1区域里面种1种花,且相邻的两个区域种不同的花,则不同的种法总数为_______.例题4.(2022·全国·高二课时练习)现有4种不同颜色要对如图的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有______种.同类题型归类练1.(2022·全国·高二课时练习)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是A.12 B.24 C.30 D.362.(2022·全国·高二课时练习)四色定理又称四色猜想,是世界近代三大数学难题之一.它是于1852年由毕业于伦敦大学的格斯里提出来的,其内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色”.某校数学兴趣小组在研究给四棱锥的各个面涂颜色时,提出如下的“四色问题”:要求相邻面(含公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论