云南省曲靖市宣威市东山镇第一中学2021-2022学年高二数学文下学期期末试卷含解析_第1页
云南省曲靖市宣威市东山镇第一中学2021-2022学年高二数学文下学期期末试卷含解析_第2页
云南省曲靖市宣威市东山镇第一中学2021-2022学年高二数学文下学期期末试卷含解析_第3页
云南省曲靖市宣威市东山镇第一中学2021-2022学年高二数学文下学期期末试卷含解析_第4页
云南省曲靖市宣威市东山镇第一中学2021-2022学年高二数学文下学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市宣威市东山镇第一中学2021-2022学年高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过双曲线的右焦点作直线交曲线于A、B两点,若则这样的直线存在(

)A.

0条

B.1条

C.2条

D.3条参考答案:B2.已知,则函数的最小值为(

)A.4

B.5

C.2

D.3参考答案:B3.利用独立性检验的方法调查高中性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用2×2列联表,由计算可得K2≈7.245,参照下表:得到的正确结论是(

)0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.有99%以上的把握认为“爱好该项运动与性别无关”B.有99%以上的把握认为“爱好该项运动与性别有关”、C.在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”参考答案:B【分析】由,结合临界值表,即可直接得出结果.【详解】由,可得有99%以上的把握认为“爱好该项运动与性别有关”.故选B【点睛】本题主要考查独立性检验,会对照临界值表,分析随机变量观测值即可,属于基础题型.4.某地气象局预报说,明天本地降水概率为80%,你认为下面哪一个解释能表明气象局的观点.()A.明天本地有80%的时间下雨,20%的时间不下雨B.明天本地有80%的区域下雨,20%的区域不下雨C.明天本地下雨的机会是80%D.气象局并没有对明天是否下雨作出有意义的预报参考答案:C【考点】概率的意义.【分析】根据概率的意义,即可得出结论.【解答】解:根据概率的意义,“明天降水的概率为80%”的正确解释是明天下雨的机会是80%,故选C.5.若关于的不等式的解集是(一,+),则实数的取值范围是(

)A.

B.

C.

D.参考答案:B6.(5分)某学校有教职员工150人,其中高级职称15人,中级职称45人,一般职员90人,现在用分层抽样抽取30人,则样本中各职称人数分别为() A. 5,10,15 B. 3,9,18 C. 3,10,17 D. 5,9,16参考答案:B考点: 分层抽样方法.专题: 概率与统计.分析: 求出样本容量与总容量的比,然后用各层的人数乘以得到的比值即可得到各层应抽的人数.解答: 解:由=,所以,高级职称人数为15×=3(人);中级职称人数为45×=9(人);一般职员人数为90×=18(人).所以高级职称人数、中级职称人数及一般职员人数依次为3,9,18.故选B.点评: 本题考查了分层抽样,在分层抽样过程中,每个个体被抽取的可能性是相等的,此题是基础题.7.复数满足,则复数的实部与虚部之差为 (

)A. B. C. D.参考答案:D8.已知向量=(1,1,0),=(﹣1,0,2),且与互相垂直,则k的值是()A.1 B. C. D.参考答案:D【考点】数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】根据题意,易得k+,2﹣的坐标,结合向量垂直的性质,可得3(k﹣1)+2k﹣2×2=0,解可得k的值,即可得答案.【解答】解:根据题意,易得k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2).∵两向量垂直,∴3(k﹣1)+2k﹣2×2=0.∴k=,故选D.【点评】本题考查向量数量积的应用,判断向量的垂直,解题时,注意向量的正确表示方法.9.右图为某几何体三视图,按图中所给数据,该几何体的体积为(

)A.16

B.16

C.64+16

D.16+参考答案:D略10.若两个球的表面积之比为1:4,则这两个球的体积之比为()A.1:2 B.1:4 C.1:8 D.1:16参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.设的夹角为;则等于______________.参考答案:212.函数f(x)的定义域为R,周期为4,若f(x﹣1)为奇函数,且f(1)=1,则f(7)+f(9)=

.参考答案:1【考点】3L:函数奇偶性的性质;3Q:函数的周期性.【分析】由已知中f(x﹣1)为奇函数,可得f(﹣1)=0,结合函数f(x)的定义域为R,周期为4,且f(1)=1,则f(7)+f(9)=f(﹣1)+f(1),进而得到答案.【解答】解:由f(x﹣1)为奇函数,知f(﹣1)=0,又∵函数f(x)的定义域为R,周期为4,f(1)=1,∴f(7)+f(9)=f(﹣1)+f(1)=1,故答案为:113.在平面直线坐标系中,椭圆的中心为原点,焦点在轴上,离心率为,过的直线交C于A,B两点,且的周长为16,那么椭圆C的方程为

。参考答案:略14.已知点和圆:,过点的直线被圆所截得的弦长为,则直线的方程为

.参考答案:或15.椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为________.(离心率)参考答案:16.若,则=

.参考答案:17.一正多面体其三视图如右图所示(俯视图为等边三角形),该正多面体的体积为__________。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(其中),若的一条对称轴离最近的对称中心的距离为(I)求的单调递增区间;(II)在中角A、B、C的对边分别是满足恰是的最大值,试判断的形状.参考答案:(Ⅰ)因为的对称轴离最近的对称中心的距离为所以,所以,所以………………3分解得:所以函数单调增区间为……5分(Ⅱ)因为,由正弦定理,得因为,所以所以,所以……8分所以根据正弦函数的图象可以看出,无最小值,有最大值,此时,即,所以所以为等边三角形…………10分19.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.参考答案:【考点】向量的共线定理;平面的概念、画法及表示.【专题】圆锥曲线的定义、性质与方程.【分析】(1)直线l与椭圆有两个不同的交点,即方程组有2个不同解,转化为判别式大于0.(2)利用2个向量共线时,坐标之间的关系,由一元二次方程根与系数的关系求两根之和,解方程求常数k.【解答】解:(Ⅰ)由已知条件,直线l的方程为,代入椭圆方程得.整理得①直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=,解得或.即k的取值范围为.

(Ⅱ)设P(x1,y1),Q(x2,y2),则,由方程①,.②又.③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数k.【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.20.(本小题满分14分)通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为的样本,问样本中看与不看营养说明的女生各有多少名?(2)从(1)中的5名女生样本中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率;(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?性别与看营养说明列联表

单位:名

男女总计看营养说明503080不看营养说明102030总计6050110参考答案:解:(1)根据分层抽样可得:样本中看营养说明的女生有名,样本中不看营养说明的女生有名;…………2分(2)记样本中看营养说明的名女生为,不看营养说明的名女生为,从这5名女生中随机选取两名,共有个等可能的基本事件为:;;;;;;;;;.………………5分其中事件“选到看与不看营养说明的女生各一名”包含了个的基本事件:;;;;;.………7分

所以所求的概率为………9分

(3)假设:该校高中学生性别与在购买食物时看营养说明无关,则应该很小.根据题中的列联表得

………12分有%的把握认为该校高中学生“性别与在购买食物时看营养说明”有关

14分21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.参考答案:【考点】直线的截距式方程;确定直线位置的几何要素;过两条直线交点的直线系方程.【专题】待定系数法.【分析】(1)先求出直线l在两坐标轴上的截距,再利用l在两坐标轴上的截距相等建立方程,解方程求出a的值,从而得到所求的直线l方程.(2)把直线l的方程可化为y=﹣(a+1)x+a﹣2,由题意得,解不等式组求得a的范围.【解答】解:(1)令x=0,得y=a﹣2.

令y=0,得(a≠﹣1).∵l在两坐标轴上的截距相等,∴,解之,得a=2或a=0.∴所求的直线l方程为3x+y=0或x+y+2=0.(2)直线l的方程可化为y=﹣(a+1)x+a﹣2.∵l不过第二象限,∴,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1].【点评】本题考查直线在坐标轴上的截距的定义,用待定系数法求直线的方程,以及确定直线位置的几何要素.22.设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足≤0,(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】(1)由a=1得到命题p下的不等式,并解出该不等式,解出命题q下的不等式,根据p∧q为真,得到p真q真,从而求出x的取值范围;(2)先求出¬p,¬q,根据¬p是¬q的充分不必要条件,即可求出a的取值范围.【解答】解:(1)若a=1,解x2﹣4x+3<0得:1<x<3,解得:2<x≤3;∴命题p:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论