版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市宣威市格宜镇第二中学2022年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知Ω={(x,y)|},直线y=mx+2m和曲线y=有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[,1],则实数m的取值范围() A.[,1] B.[0,] C.[,1] D.[0,1]参考答案:D【考点】直线和圆的方程的应用. 【专题】压轴题. 【分析】画出图形,不难发现直线恒过定点(﹣2,0),结合概率范围可知直线与圆的关系, 直线以(﹣2,0)点为中心顺时针旋转至与x轴重合,从而确定直线的斜率范围. 【解答】解:画出图形,不难发现直线恒过定点(﹣2,0), 圆是上半圆,直线过(﹣2,0),(0,2)时, 它们围成的平面区域为M,向区域Ω上随机投一点A, 点A落在区域M内的概率为P(M),此时P(M)=, 当直线与x轴重合时,P(M)=1; 直线的斜率范围是[0,1]. 故选D. 【点评】本题考查直线与圆的方程的应用,几何概型,直线系,数形结合的数学思想,是好题,难度较大. 2.已知复数,则(
)A.
B.
C.1
D.2参考答案:B略3.已知函数,若△ABC中,角C是钝角,那么()A.B.C.D.参考答案:A试题分析:因为,所以,故函数在区间上是减函数,又都是锐角,且,所以,所以,故,选A.考点:1.应用导数研究函数的单调性;2.三角函数的图象和性质.4.已知为等差数列,若A.24
B.27
C.15
D.54参考答案:B5.在中,角所对的边分别为,若,且,则下列关系一定不成立的是(A)
(B)
(C)
(D)参考答案:B6.
递减等差数列{an}的前n项和Sn满足:S5=S10,则欲Sn最大,则n=(
)A.10
B.7
C.9
D.7,8参考答案:D7.的值是
A:
B:
C:
D:参考答案:B8.2015年4月22日,亚非领导人会议在印尼雅加达举行,某五国领导人A,B,C,D,E,除B与E、D与E不单独会晤外,其他领导人两两之间都要单独会晤,现安排他们在两天的上午、下午单独会晤(每人每个半天最多只进行一次会晤),那么安排他们单独会晤的不同方法共有()A.48种 B.36种 C.24种 D.8种参考答案:A【考点】排列、组合及简单计数问题.【分析】单独会晤,共有AB,AC,AD,AE,BC,BD,CD,CE共8种情况,再分步,即可得出结论.【解答】解:单独会晤,共有AB,AC,AD,AE,BC,BD,CD,CE共8种情况,设为第n次,分成四个时段,每个时段[即某个上午或下午]有两次,各个时段没有关系.设第一次会晤有E,则有两种方法(不防设为AE),则第二次会晤在BCD内任选(设为BC),有三种方法,第三次设再有E则有一种方法(CE),第四次在ABD内任选则有两种方法(设为AD),则剩下的排序只有4种,则有2×3×1×2×4=48种.故选:A.9.由,,,组成没有重复数字的三位数,其中奇数的个数为(
)
(A)36
(B)24
(C)12
(D)6参考答案:C略10.已知点A(0,2),抛物线的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若,则p的值等于(
)A.
B.2
C.4
D.8参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若复数,则复数z在复平面内的对应点位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B【分析】把复数为标准形式,写出对应点的坐标.【详解】,对应点,在第二象限.故选B.【点睛】本题考查复数的几何意义,属于基础题.12.椭圆的长轴的顶点坐标是
,短轴的顶点坐标是
参考答案:,略13.已知函数的图像如图所示,且.则的值是
.参考答案:3略14.在平面直角坐标系中,直线的倾斜角的大小是____▲_______
参考答案:015.曲线在点处的切线方程为_____________.参考答案:略16.函数的单调递减区间
.
参考答案:
略17.某货轮在处看灯塔在北偏东方向,它向正北方向航行24海里到达处,看灯塔在北偏东方向.则此时货轮到灯塔的距离为___________海里.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数。(1)求的最小正周期;(2)若将的图象向右平移个单位,得到函数的图象,求函数在区间
上的最大值和最小值。参考答案:解:(1)
………………2分
.
………4分
所以的最小正周期为.
……6分(2)将的图象向右平移个单位,得到函数的图象,
.
…………8分时,,
……………9分当,即时,,取得最大值2.…………10分当,即时,,取得最小值.………12分【说明】本小题主要考查了三角函数中诱导公式、两角和与差的正余弦公式、二倍角公式、三角函数的性质和图象,以及图象变换等基础知识,考查了化归思想和数形结合思想,考查了运算能力.略19.(本题满分16分)
如图,抛物线轴交于O,A两点,交直线于O,B两点,经过三点O,A,B作圆C。
(I)求证:当b变化时,圆C的圆心在一条定直线上;
(II)求证:圆C经过除原点外的一个定点;
(III)是否存在这样的抛物线M,使它的顶点与C的距离不大于圆C的半径?参考答案:解:(I)易得设圆C的方程为………………4分这说明当b变化时,(I)中的圆C的圆心在定直线上。………………6分
(II)设圆C过定点………………9分故当b变化时,(I)中的圆C经过除原点外的一个定点坐标为(—1,1)。11分
(III)抛物线M的顶点坐标为(),若存在这样的抛物线M,使它的顶点与它对应的圆C的圆心之间的距离不大于圆C的半径,则,………………14分整理得以上过程均可逆,故存在抛物线使它的顶点与C的距离不大于圆C的半径。
………………16分略20.已知椭圆M:+=1(a>b>0)的长轴长为4,且与椭圆+=1有相同的离心率.(Ⅰ)求椭圆M的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与M有两个交点A、B,且⊥?若存在,写出该圆的方程,并求||的取值范围,若不存在,说明理由.参考答案:【考点】KH:直线与圆锥曲线的综合问题.【分析】(Ⅰ)由已知条件得a=2,e=,由此能求出椭圆M的方程.(Ⅱ)不妨设存在圆C:x2+y2=r2,(r>0),若l的斜率不存在,设l:x=r,得;若l的斜率存在,设l:y=kx+m,由l与C相切,将直线l方程代入椭圆M的方程,得(1+2k2)x2+4kmx+2m2﹣8=0,由此能求出||的取值范围.【解答】解:(Ⅰ)∵椭圆M:+=1(a>b>0)的长轴长为4,∴a=2,∵椭圆M与椭圆+=1有相同的离心率,∴e=,解得c=2,∴b2=8﹣4=4,∴椭圆M的方程为.(Ⅱ)不妨设存在圆C:x2+y2=r2,(r>0)(i)若l的斜率不存在,设l:x=r,则A(r,y0),B(r,﹣y0),由,得,又,两式联立消去y,得,∴.(ii)若l的斜率存在,设l:y=kx+m,∵l与C相切,∴,∴m2=r2(1+k2),①又将直线l方程代入椭圆M的方程,得:(1+2k2)x2+4kmx+2m2﹣8=0,(*)设A(x1,y1),B(x2,y2),由韦达定理,得,,由=0,得,化简,得3m2=8+8k2,②联立①②,得,综上所述,存在圆C:,由,得|AB|2=(1+k2)===(1+),k≠0.∈(,12].当k=0时,|AB|2=,∴|AB|∈[].又当k不存在时,|AB|=,∴||的取值范围是[].【点评】本题考查椭圆方程的求法,考查线段的取值范围的求法,解题时要认真审题,注意椭圆弦长公式的合理运用.21.已知函数.(1)求函数的极值;(2)若是方程的两个不同的实数根,求证:.参考答案:(1)有极小值,无极大值.(2)见解析试题分析:(1)先求函数导数,再求导函数在定义区间上零点,列表分析导函数符号变化规律,确定函数极值,(2)先根据零点得,再代入化简不等式为,构造函数,其中.最后根据导数确定函数单调性,根据单调性证不等式.试题解析:(1)依题意,故当时,,当时,故当时,函数有极小值,无极大值.(2)因为,是方程的两个不同的实数根.∴两式相减得,解得要证:,即证:,即证:,即证,不妨设,令.只需证.设,∴;令,∴,∴上单调递减,∴,∴,∴在为减函数,∴.即在恒成立,∴原不等式成立,即.22.(本小题满分16分)已知等差数列的首项为,公差为,等比数列的首项为,公比为(其中均为正整数).(1)若,求数列,的通项公式;(2)在(1)的条件下,若成等比数列,求数列的通项公式;(3)若,且,求的值.参考答案:(1)由得:,解得或,,故.……………
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院老人心理健康制度
- 养老院老人紧急救援人员职业发展规划制度
- 质量管理体系制度
- 《运动健康模板》课件
- 房屋权属转移合同(2篇)
- 2024年度市政绿化工程土石方施工补充合同6篇
- 2024年教育软件销售与授权合同3篇
- 《修炼执行智慧》课件
- 2025年文山道路客货运输从业资格证b2考试题库
- 2025年昭通下载b2货运从业资格证模拟考试考试
- 收货确认单模版
- 处理班级突发事件方法处理班级纠纷案例分析
- 《时代广场的蟋蟀》阅读试题(含答案)三套
- 屋面防水报价单
- 实用牛津树授课PPT27. ORT-PreK-L27-The-Dream-200602105041-200815212000
- 实验训练3数据增删改操作
- 《给数学教学添一道“味”:基于绘本的小学低段数学教学内容创生研》读书笔记模板
- 妊娠剧吐的护理查房【产科】-课件
- 部编版五年级语文下册 祖父的园子 教学课件(第1课时)
- 部编新人教版语文六年级上册期中易读错写错字汇总
- 新概念英语第一册课文完整版
评论
0/150
提交评论