云南省昆明市汤朗乡中学2021-2022学年高三数学文期末试卷含解析_第1页
云南省昆明市汤朗乡中学2021-2022学年高三数学文期末试卷含解析_第2页
云南省昆明市汤朗乡中学2021-2022学年高三数学文期末试卷含解析_第3页
云南省昆明市汤朗乡中学2021-2022学年高三数学文期末试卷含解析_第4页
云南省昆明市汤朗乡中学2021-2022学年高三数学文期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市汤朗乡中学2021-2022学年高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知a,b是两条不重合的直线,,是两个不重合的平面,下列命题中正确的是(A)

,,则(B)

a,,,,则(C)

,,则(D)

当,且时,若∥,则∥

参考答案:C略2.已知a是实数,是纯虚数,则有a等于

(A)-1

(B)1

(C)

(D)参考答案:B3.设等差数列()的前n项和为,该数列是单调递增数列,若,则的取值范围是

(

)A.

B.

C.

D.

参考答案:A略4.已知实数满足,则的最小值是()A.6 B.5 C.4 D.3参考答案:C【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),z=2|x﹣2|+|y|=﹣2x+y+4,化为y=2x+z﹣4.由图可知,当直线y=2x+z﹣4过A时,直线在y轴上的截距最小,z有最大值为4.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知公差为d的等差数列{an}前n项和为Sn,若有确定正整数n0,对任意正整数m,?<0恒成立,则下列说法错误的是()A.a1?d<0 B.|Sn|有最小值C.?>0 D.?>0参考答案:C【考点】等差数列的性质.【分析】利用已知及其等差数列的单调性通项公式与求和公式即可得出.【解答】解:∵公差为d的等差数列{an},有确定正整数n0,对任意正整数m,?<0恒成立,∴a1与d异号,即a1?d<0,|Sn|有最小值,?<0,?>0.因此C不正确.故选:C.【点评】本题考查了等差数列的单调性通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.方程在内(

)(A)没有根

(B)有且仅有一个根(C)有且仅有两个根

(D)有无穷多个根参考答案:C略7.定义在R上的偶函数,且在上单调递增,设,则a,b,c的大小关系是

(

)A.

B.

C.

D.参考答案:D略8.在等比数列中,则的值为 (

)A.9

B.1

C.2 D.3参考答案:D9.“log2a>log2b”是“2a>2b”的A.充分不必要条件

B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:A10.已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是(

)A.(3,7) B.(9,25) C.(13,49) D.(9,49)参考答案:C【考点】函数单调性的性质;奇偶函数图象的对称性.【专题】综合题;压轴题;转化思想.【分析】由函数y=f(x﹣1)的图象关于点(1,0)对称,结合图象平移的知识可知函数y=f(x)的图象关于点(0,0)对称,从而可知函数y=f(x)为奇函数,由f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,可把问题转化为(x﹣3)2+(y﹣4)2<4,借助于的有关知识可求【解答】解:∵函数y=f(x﹣1)的图象关于点(1,0)对称∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)为奇函数,则f(﹣x)=﹣f(x)又∵f(x)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣8y)<0恒成立∴(x2﹣6x+21)<﹣f(y2﹣8y)=f(8y﹣y2)恒成立∴x2﹣6x+21<8y﹣y2∴(x﹣3)2+(y﹣4)2<4恒成立设M(x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,则x2+y2表示在半圆内任取一点与原点的距离的平方由图可知,最短距离为OA=,最大距离OB=OC+BC=5+2=7∴13<x2+y2<49故选C【点评】本题考查了函数图象的平移、函数的奇偶性、单调性及圆的有关知识,解决问题的关键是把“数”的问题转化为“形”的问题,借助于图形的几何意义减少了运算量,体现“数形结合:及”转化”的思想在解题中的应用.二、填空题:本大题共7小题,每小题4分,共28分11.设函数,观察:根据以上事实,由归纳推理可得:当且时,

参考答案:12.已知,,且x+y=1,则的取值范围是__________.参考答案:[1/2,1],所以当时,取最大值1;当时,取最小值;因此取值范围为13.已知点P是椭圆是椭圆焦点,则

.参考答案:014.已知集合,,则=

.参考答案:15.如图所示:在中,于,为线段上的点,且,则的值等于

参考答案:16.已知球O的表面积是36π,A,B是球面上的两点,∠AOB=60°,C时球面上的动点,则四面体OABC体积V的最大值为.参考答案:【考点】球的体积和表面积.【分析】球O的表面积为36π,可得半径为3,当CO垂直于面AOB时,三棱锥O﹣ABC的体积最大,即可求出三棱锥O﹣ABC的体积的最大值.【解答】解::球O的表面积为36π,半径为3,当CO垂直于面AOB时,三棱锥O﹣ABC的体积最大,此时VO﹣ABC=VC﹣AOB==故答案为:,17.“,”的否定是

.参考答案:使三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)

非读书迷读书迷合计男

15

45合计

(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?附:K2=

n=a+b+c+dP(K2≥k0)0.1000.0500.0250.0100.001k02.7063.8415.0246.63510.828参考答案:【考点】独立性检验.【分析】(1)利用频率分布直方图,直接求出x,然后求解读书迷人数.(2)利用频率分布直方图,写出表格数据,利用个数求出K2,判断即可.【解答】解:(1)由已知可得:(0.01+0.02+0.03+x+0.015)*10=1,可得x=0.025,…因为(0.025+0.015)*10=0.4,将频率视为概率,由此可以估算出全校3000名学生中读书迷大概有1200人;…(2)完成下面的2×2列联表如下

非读书迷读书迷合计男401555女202545合计6040100…≈8.249,…VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关.…19.(本小题满分12分)

如图,在梯形ADEB中,AB//DE,AD=DE=2AB,ACD是正三角形,AB平面ACD,且F是CD的中点。(1)判断直线AF与平面BCE的位置关系;(2)证明:平面BCE平面CDE;(3)若AB=1,求多面体的体积。参考答案:20.定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界.已知函数;.(1)当a=1时,求函数在上的值域,并判断函数在上是否为有界数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围;(3)若,函数在上的上界是,求的取值范围.参考答案:解:(1)当时,

因为在上递减,所以,即在的值域为故不存在常数,使成立所以函数在上不是有界函数.

(2)由题意知,在上恒成立.,

∴在上恒成立∴

设,,,由得t≥1,设,所以在上递减,在上递增,在上的最大值为,在上的最小值为

所以实数a的取值范围为(3),∵m>0

∴在上递减,∴

①当,即时,,此时,②当,即时,,此时,

综上所述,当时,的取值范围是;当时,的取值范围是略21.已知函数f(x)=(Ⅰ)求f()及x∈[2,3]时函数f(x)的解析式(Ⅱ)若f(x)≤对任意x∈(0,3]恒成立,求实数k的最小值.参考答案:【考点】函数恒成立问题;分段函数的应用.【分析】(Ⅰ)由函数f(x)=可求f()的值,由x∈[2,3]?x﹣2∈[0,1],可求得此时函数f(x)的解析式;(Ⅱ)依题意,分x∈(0,1]、x∈(1,2]、x∈(2,3]三类讨论,利用导数由f(x)≤对任意x∈(0,3]恒成立,即可求得实数k的最小值.【解答】解:(Ⅰ)f()=﹣f()=f()=×=.当x∈[2,3]时,x﹣2∈[0,1],所以f(x)=[(x﹣2)﹣(x﹣2)2]=(x﹣2)(3﹣x).(Ⅱ)①当x∈(0,1]时,f(x)=x﹣x2,则对任意x∈(0,1],x﹣x2≤恒成立?k≥(x2﹣x3)max,令h(x)=x2﹣x3,则h′(x)=2x﹣3x2,令h′(x)=0,可得x=,当x∈(0,)时,h′(x)>0,函数h(x)单调递增;当x∈(,1)时,h′(x)<0,函数h(x)单调递减,∴h(x)max=h()=;②当x∈(1,2]时,x﹣1∈(0,1],所以f(x)=﹣[(x﹣1)﹣(x﹣1)2]≤恒成立?k≥(x3﹣3x2+2x),x∈(1,2].令t(x)=x3﹣3x2+2x,x∈(1,2].则t′(x)=3x2﹣6x+2=3(x﹣1)2﹣1,当x∈(1,1+)时,t(x)单调递减,当x∈(1+,2]时,t(x)单调递增,t(x)max=t(2)=0,∴k≥0(当且仅当x=2时取“=”);③当x∈(2,3]时,x﹣2∈[0,1],令x﹣2=t∈(0,1],则k≥(t+2)(t﹣t2)=g(t),在t∈(0,1]恒成立.g′(t)=﹣(3t2+2t﹣2)=0可得,存在t0∈[,1],函数在t=t0时取得最大值.而t0∈[,1]时,h(t)﹣g(t)=(t2﹣t3)+(t+2)(t2﹣t)=t(1﹣t)(2t﹣1)>0,所以,h(t)max>g(t)max,当k≥时,k≥h(t)max>g(t)max成立,综上所述,k≥0,即kmin=0.22.已知函数f(x)=(其中a≤2且a≠0),函数f(x)在点(1,f(1))处的切线过点(3,0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)与函数g(x)=a+2﹣x﹣的图象在(0,2]有且只有一个交点,求实数a的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(1)利用导数的几何意义可得切线方程,对a分类讨论、利用导数研究函数的单调性即可;(2)等价方程在(0,2]只有一个根,即x2﹣(a+2)x+alnx+2a+2=0在(0,2]只有一个根,令h(x)=x2﹣(a+2)x+alnx+2a+2,等价函数h(x)在(0,2]与x轴只有唯一的交点.由,对a分类讨论、结合图象即可得出.【解答】解:(1),∴f(1)=b,=a﹣b,∴y﹣b=(a﹣b)(x﹣1),∵切线过点(3,0),∴b=2a,∴,①当a∈(0,2]时,单调递增,单调递减,②当a∈(﹣∞,0)时,单调递减,单调递增.(2)等价方程在(0,2]只有一个根,即x2﹣(a+2)x+alnx+2a+2=0在(0,2]只有一个根,令h(x)=x2﹣(a+2)x+alnx+2a+2,等价函数h(x)在(0,2]与x轴只有唯一的交点,∴①当a<0时,h(x)在x∈(0,1)递减,x∈(1,2]的递增,当x→0时,h(x)→+∞,要函数h(x)在(0,2]与x轴只有唯一的交点,∴h(1)=0或h(2)<0,∴a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论