下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市师范专科学校附属中学2023年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“”的否定是(A)(B)(C)(D)参考答案:D略2.函数的反函数的解析表达式为(A)
(B)(C)
(D)参考答案:答案:A3.是定义在R上的奇函数,下列结论中,不正确的是(
)A.
B.
C
D.参考答案:D4.已知集合,则(
)A.
B.
C.
D.参考答案:C5.已知向量,,则是//的(
)A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件参考答案:D【分析】当时,求,然后再判断充分必要条件.【详解】当时,,即,解得:或,是的充分不必要条件.故选:D【点睛】本题考查向量平行的坐标表示求参数和充分必要条件结合的简单综合问题,属于基础题型.6.如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A.36π B.π C.8π D.π参考答案:B【考点】由三视图求面积、体积.【分析】如图所示,该几何体为四棱锥P﹣ABCD,侧面PAB⊥底面ABCD,底面ABCD是正方形,其对角线AC∩BD=O,取AB的中点E,OE⊥AB,OE⊥侧面PAB,PE=2,AB=4.则点O为其外接球的球心,半径R=2.即可得出.【解答】解:如图所示,该几何体为四棱锥P﹣ABCD,侧面PAB⊥底面ABCD,底面ABCD是正方形,其对角线AC∩BD=O,取AB的中点E,OE⊥AB,OE⊥侧面PAB,PE=2,AB=4.则点O为其外接球的球心,半径R=2.∴这个几何体外接球的体积V==π.故选:B.7.设函数的定义域为,若对于任意、,当时,恒有,则称点为函数图像的对称中心.研究函数的某一个对称中心,并利用对称中心的上述定义,可得到的值为(
)A.
B.
C.
D.参考答案:A8.如图是某个几何体的三视图,则该几何体的体积是()A. B.2 C.3 D.4参考答案:A【考点】L!:由三视图求面积、体积.【分析】作出棱锥的直观图,根据三视图数据代入计算即可.【解答】解:几何体为四棱锥,作出直观图如图所示:其中侧面PAB⊥底面ABCD,底面ABCD是直角梯形,PA=PB,由三视图可知,AB∥CD,AB=BC=2,CD=1,侧面PAB中P到AB的距离为h=,∴几何体的体积V===.故选A.9.已知集合,,则(
)A.(0,1)
B.(1,2)
C.(0,2)
D.(1,+∞)参考答案:B由题意得,集合B={x|x2-2x<0}={x|0<x<2},所以,故选B.10.设,则“”是“为偶函数”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.若随机变量ξ~N(2,1),且P(ξ>3)=0.1587,则P(ξ>1)=.参考答案:0.8413【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ~N(2,1),得到正态曲线关于x=2对称,由P(ξ>1)=P(ξ<3),即可求概率.【解答】解:∵随机变量ξ~N(2,1),∴正态曲线关于x=2对称,∵P(ξ>3)=0.1587,∴P(ξ>1)=P(ξ<3)=1﹣0.1587=0.8413.故答案为:0.841312.已知数列为等比数列,且,则的值为_________________.参考答案:略13.设函数,,若在区间上具有单调性,且,则的最小正周期为________.
参考答案:π14.设向量与的夹角为,且,,则
.参考答案:15.在△ABC中,AB=4,AC=4,∠BAC=60°,延长CB到D,使BA=BD,设E点为线段AB中点,,则的值是
参考答案:16.设函数,对任意,恒成立,则实数的取值范围是.参考答案:17.在极坐标系中,过圆的圆心,且垂直于极轴的直线的极坐标方程为
.参考答案:,圆的标准方程为,圆心为,半径为2,所以所求直线方程为,即垂直于极轴的直线的极坐标方程为。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知实数a>0,b>0,函数f(x)=|x﹣a|﹣|x+b|的最大值为3.(I)求a+b的值;(Ⅱ)设函数g(x)=﹣x2﹣ax﹣b,若对于?x≥a均有g(x)<f(x),求a的取值范围.参考答案:【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)根据绝对值的性质求出f(x)的最大值是a+b,从而求出a+b的值即可;(Ⅱ)根据a,b的范围,问题转化为x2+ax﹣a>0在[a,+∞)恒成立,结合函数的单调性求出a的范围即可.【解答】解:(Ⅰ)f(x)=|x﹣a|﹣|x+b|≤|x﹣a﹣x﹣b|=|a+b|=3,∵a>0,b>0,∴a+b=3;(Ⅱ)由(Ⅰ)得,0<a<3,0<b<3,∴?x≥a,x﹣a≥0,x+b>0,此时,f(x)=x﹣a﹣x﹣b=﹣3,若对于?x≥a均有g(x)<f(x),即x2+ax+b﹣3>0在[a,+∞)恒成立,即x2+ax﹣a>0在[a,+∞)恒成立,对称轴x=﹣<0,故只需a2+a2﹣a>0即可,解得:a>,故<a<3.【点评】本题考查了绝对值的性质,考查绝对值不等式的解法以及函数恒成立问题,考查二次函数的性质,是一道中档题.19.如图,在三棱柱
中,已知
,
,
与平面
所成角为
,平面。(Ⅰ)求证:
;(Ⅱ)求三棱锥
的高。参考答案:(Ⅰ)证明:连接
,因为
平面,所以。因为,所以…..2分因为,,所以,即…..4分因为
,所以平面
所以…..6分(Ⅱ)解:因为,H=…..12分20.设,其中.(1)求证:曲线在点处的切线过定点;(2)若函数在上存在极值,求实数的取值范围.参考答案:证明:(1)因为所以,又,所以曲线在点处的切线方程为,即,所以曲线在处的切线过定点.(2)因为,因为函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 报废车辆协议书大全
- 出租房子意外免责协议合同
- 2024年度电商行业发展战略合同
- 二零二四年度企业数字化转型战略规划合同
- 二零二四年度仪器设备租赁合同
- 店面分割协议书
- 二零二四年度品牌授权使用合同标的及相关权利义务
- 矸石运输路线规划合同2024版
- 二零二四年度诊所医疗废物回收处理服务合同
- 二零二四年度技术开发合作保密协议
- 《消防安全常识培训》课件
- 《汽车故障诊断技术》考试复习题库(含答案)
- 2024-2030年中国食品安全行业运营模式及发展战略规划分析报告
- 2024-2030年中国蓝宝石基片行业供需趋势及发展风险研究报告
- (统编版2024)语文七年级上册 第四单元 《阅读综合实践 》 课件(新教材)
- 2024粤东西粤北地区教师全员轮训培训心得总结
- 水厂运行质量控制管理规程
- 国外表面活性剂名称
- 水蒸汽热力学
- 旅行社低价竞争问题的分析与思考
- 国家免费艾滋病抗病毒治疗药品管理指导意见
评论
0/150
提交评论