版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年七上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为()A. B. C. D.2.如图1是一个小正方体的侧面形展开图,小正方体从图2中右边所示的位置依次翻到第1格,第2格,第3格,这时小正方体朝上一面的字是()A.中 B.国 C.江 D.苏3.设一列数a1,a2,a3,…,a2015,…中任意三个相邻的数之和都是20,已知a2=2x,a18=9+x,a65=6﹣x,那么a2020的值是()A.2 B.3 C.4 D.54.如图,A、B两点在数轴上表示的数分别为a、b,以下结论:①a﹣b>0;②a+b<0;③(b﹣1)(a+1)>0;④.其中结论正确的是()A.①② B.③④ C.①③ D.①②④5.如图的四个图中,∠1与∠2是同位角的有()A.②③ B.①②③ C.① D.①②④6.若一个整数12500…0用科学记数法表示为1.25×1010,则原数中“0”的个数为()A.5 B.8 C.9 D.107.如图,已知线段,点在上,,点是的中点,那么线段的长为()A. B. C. D.8.多项式1+xy﹣xy2的次数及最高次项的系数分别是()A.2,1 B.2,﹣1 C.3,﹣1 D.5,﹣19.已知,,且,则的值为()A.2或12 B.2或 C.或12 D.或10.下列变形正确的是()A.4x-5=3x+2变形得4x-3x=-2+5 B.x-1=x+3变形得4x-6=3x+18C.3(x-1)=2(x+3)变形得3x-1=2x+6 D.6x=2变形得x=311.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得D.如果2x=3y,那么12.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.z2+4z3=5z5二、填空题(每题4分,满分20分,将答案填在答题纸上)13.多项式﹣3x+7是关于x的四次三项式,则m的值是_____.14.已知:,则的值为_______.15.若有意义,则的取值范围是_________.16.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是________(填编号).17.对于有理数、,定义一种新运算“”:.当,在数轴上的位置如图所示时,化简______.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)小王购买了一套房子,他准备将地面都铺上地砖,地面结构如图所示,请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积为平方米;(2)若x=5,y=1,铺地砖每平方米的平均费用为100元,则铺地砖的总费用为元;(3)已知房屋的高度为3米,现需要在客厅和卧室的墙壁上贴壁纸,那么用含x的代数式表示至少需要平方米的壁纸;如果所粘壁纸的价格是100元/平方米,那么用含x的代数式表示购买该壁纸至少需要元.(计算时不扣除门,窗所占的面积)19.(5分)已知:如图,点是线段上一点,,动点从出发,以的速度向点运动,同时,动点从出发以的速度向运动﹒(在线段上,在线段上).(1)若,当点运动了,此时____;(填空)(2)若,当线段时,求动点和运动的时间.(3)若,当点运动时,和有什么数量关系,请说明理由﹒20.(8分)(1)计算:(2)解方程:21.(10分)(1)试验探索:如果过每两点可以画一条直线,那么请下面三组图中分别画线,并回答问题:第(1)组最多可以画______条直线;第(2)组最多可以画______条直线;第(3)组最多可以画______条直线.(2)归纳结论:如果平面上有n(n≥3)个点,且每3个点均不在一条直线上,那么最多可以画出直线______条.(作用含n的代数式表示)(3)解决问题:某班50名同学在毕业后的一次聚会中,若每两人握一次手问好,则共握次手;最后,每两个人要互赠礼物留念,则共需件礼物.22.(10分)已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=20,AD=2BE,求线段CE的长.23.(12分)完成下列各题:(1)计算:.(2)计算:.
参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】149600000=1.496×108,故选D.【点睛】此题考查了对科学记数法的理解和运用.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、B【分析】先根据翻转的方向确定底面上的字,再由平面图形的折叠及立体图形的表面展开图的特点得出朝上一面的字即可得答案.【详解】由题意可知正方体翻转到3时,“盐”字在底面,∵正方体表面展开图相对面之间一定相隔一个正方形,∴“盐”字的对面是“国”字,∴小正方体朝上一面的字是“国”,故选:B.【点睛】本题考查正方体相对两个面上的文字,熟练掌握正方体的表面展开图相对面之间一定相隔一个正方形的特点并解结合实际操作是解题关键.3、D【分析】由题可知,a1,a2,a3每三个循环一次,可得a18=a3,a61=a2,所以2x=6﹣x,即可求a2=4,a3=11,再由三个数的和是20,可求a2020=a1=1.【详解】解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a1,∴a2=a1,∵a3+a4+a1=a4+a1+a6,∴a3=a6,……∴a1,a2,a3每三个循环一次,∵18÷3=6,∴a18=a3,∵61÷3=21…2,∴a61=a2,∴2x=6﹣x,∴x=2,∴a2=4,a3=a18=9+x=11,∵a1,a2,a3的和是20,∴a1=1,∵2020÷3=673…1,∴a2020=a1=1,故选:D.【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,利用有理数的运算与解方程等知识解题是关键.4、B【分析】先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】由a、b的数轴上的位置可知,﹣1<a<0,b>1,①∵a<0,b>0,∴a﹣b<0,故本小题错误;②∵﹣1<a<0,b>1,∴a+b>0,故本小题错误;③∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,∴(b﹣1)(a+1)>0,故本小题正确;④∵b>1,∴b﹣1>0,∵|a﹣1|>0,∴,故本小题正确.故选:B.【点睛】本题考查数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.5、D【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:①∠1和∠2是同位角;
②∠1和∠2是同位角;
③∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;
④∠1和∠2是同位角.
∴∠1与∠2是同位角的有①②④.
故选:D.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.6、B【分析】把写成不用科学记数法表示的原数的形式即可.【详解】解:表示的原数为12500000000,原数中"0"的个数为8,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数还原成原数时,n>0时,小数点则向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.7、C【分析】根据线段中点的性质,可得MB的长,根据线段的和差,可得答案.【详解】由M是AB中点,得:MBAB12=6(cm),由线段的和差,得:MN=MB﹣NB=6﹣2=4(cm).故选:C【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.8、C【解析】根据多项式次数和单项式的系数的定义求解.多项式的次数是多项式中最高次项的次数,即﹣xy2的次数.解:多项式1+xy﹣xy2的次数及最高次项的系数分别是3,﹣1.故选C.9、D【详解】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.10、B【分析】利用去分母,去括号,移项合并,将x系数化为1的方法分别计算得到结果,即可判断.【详解】解:A、4x-5=3x+2变形得:4x-3x=-2-5,故选项错误;
B、x-1=x+3变形得:4x-6=3x+18,故选项正确;
C、3(x-1)=2(x+3)变形得:3x-3=2x+6,故选项错误;
D、6x=2变形得x=,故选项错误.
故选B.【点睛】本题考查解一元一次方程,步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.11、D【分析】根据等式性质1对A进行判断;根据等式性质2对B、C进行判断;根据等式性质1、2对D进行判断.【详解】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣,所以B选项错误;C、由x=y得=(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以,所以D选项正确.故选:D.【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.12、C【分析】依据去括号的法则、合并同类项的法则分别判断得出答案.【详解】解:A、﹣2(a﹣b)=﹣2a+2b,故此选项错误;B、2c2﹣c2=c2,故此选项错误;C、x2y﹣4yx2=﹣3x2y,正确;D、z2+4z3,无法计算,故此选项错误;故选:C.【点睛】本题考查去括号法则和合并同类项法则,熟练掌握这两个运算法则是解题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、1【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:∵多项式﹣3x+7是关于x的四次三项式,∴m﹣1=4,解得m=1,故答案为:1.【点睛】此题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键.14、8【分析】先将已知变形,,然后原式去括号整理后,直接将已知式的值代入计算即可求解.【详解】解:∵,∴,又∵,原式.故答案为:.【点睛】此题考查了整式的加减化简求值,熟练掌握运算法则、整体代入的思想是解本题的关键.15、【分析】根据任何除0以外的数的0次方都是1,即可解得的取值范围.【详解】若有意义故答案为:.【点睛】本题考查了零次方的问题,掌握任何除0以外的数的0次方都是1是解题的关键.16、3【解析】因为减去3以后,就没有四个面在一条直线上,也就不能围成正方体,所以填3.17、【分析】根据数轴先判断出a+b和b-a的符号,然后根据绝对值的性质去绝对值并化简即可.【详解】解:由数轴可知:a+b<0,b-a<0∴===故答案为:.【点睛】此题考查的是根据数轴判断式子的符号和去绝对值化简,掌握利用数轴比较大小和绝对值的性质是解决此题的关键.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)(6x+2y+18);(2)5000;(3)(78+6x),(7800+600x).【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)把x=5,y=1代入求得答案即可;(3)先根据长方形的面积公式算出需贴壁纸的面积,然后用壁纸的价格乘以面积即可得出所需费用.【详解】解:(1)地面总面积为:6x+2×(6﹣3)+2y+3×(2+2),=6x+6+2y+12=(6x+2y+18)平方米;(2)当x=5,y=1,铺1平方米地砖的平均费用为100元时,总费用=(6×5+2×1+18)×100=50×100=5000元,答:铺地砖的总费用为5000元;(3)根据题意得:3×3×2+4×3×2+6×3×2+3x×2=(78+6x)平方米,(78+6x)×100=(7800+600x)元,则在客厅和卧室的墙壁上贴壁纸,那么至少需要(78+6x)平方米的壁纸,至少需要(7800+600x)元,故答案为:(1)(6x+2y+18);(2)5000;(3)(78+6x);(7800+600x).【点睛】本题考查了整式的加减的应用,根据题意正确列出算式是解答本题的关键.整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.19、(1)4,5;(2)4;(3),理由见解析.【分析】(1)根据运动时间和各自速度可求得CE和BD,进而结合图形即可解答;(2)求出BE=10,由CD=CE+BE﹣BD列出关于t的方程,解之即可解答;(3)分别用t表示AC和DE,即可得出数量关系.【详解】解:(1),,∵,,,故答案为:4,5;(2)当AE=5时,,,(3)当AE=5时,,.【点睛】本题考查与线段有关的动点问题、两点间的距离、线段之间的数量关系、一元一次方程的应用,解答的关键是读懂题意,结合图形,找出适当的等量关系列出方程.20、(1)﹣4;(2)x=【分析】(1)原式先计算乘方及绝对值运算,再计算除法运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)原式=﹣1+6﹣9=﹣4;(2)去分母得:5(3x+1)﹣2×10=(3x﹣2)﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,整理得:16x=7,解得:x=.【点睛】本题考查乘方、绝对值和解一元一次方程,解题的关键是掌握乘方、绝对值和解一元一次方程的运算.21、(1)见解析(2)(3)1225;2450【分析】(1)根据两点确定一条直线画出直线,观察后即可解答问题;(2)根据上面得到的规律用代数式表示即可;(3)将n=50代入可求得握手次数,送礼物时是双向的,因此是握手次数的2倍,由此即可求解.【详解】(1)图形如下:根据图形得:第(1)组最多可以画3条直线;第(2(组最多可以画6条直线;第(3)组最多可以画10条直线;(2)由(1)可知:平面上有3个点时,最多可画直线1+2=3条,平面上有4个点时,最多可画直线1+2+3=6条,平面上有5个点时,最多可画直线1+2+3+4=10条,……所以平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n-1=条直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业机房维护服务项目招标
- 征收补偿安置协议填写指南
- 工程清洁服务合同模板
- 水果连锁加盟购销协议
- 盾构掘进劳务分包合同格式
- 学会写有行动力的上学保证书
- 外墙涂料拆除合同
- 土建工程泥工分包合同
- 检测检验服务合同
- 专业物流配送合同
- 配网规划建设汇报
- 电气自动化专业职业生涯目标规划书范例及步骤
- 2024-2025学年上学期天津六年级英语期末模拟卷1
- 餐饮行业智能点餐与外卖系统开发方案
- 2024-2025学年九年级数学上学期期末考试卷
- 水利工程特点、重点、难点及应对措施
- 物业经理转正述职
- 24秋国家开放大学《企业信息管理》形考任务1-4参考答案
- 2024年共青团团课培训考试题库及答案
- 2024年共青团入团考试测试题库及答案
- 工程项目管理-001-国开机考复习资料
评论
0/150
提交评论