下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海真如中学2023年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.为了分析高二年级的8个班400名学生第一次考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是(
)A、8
B、400
C、96
D、96名学生的成绩参考答案:C2.一货轮航行到处,测得灯塔在货轮的北偏东,与灯塔相距海里,随后货轮按北偏西的方向航行分钟后,又得灯塔在货轮的东北方向,则货轮的速度为(
).A.海里/小时B.
海里/小时C.
海里/小时D.
海里/小时参考答案:B
解析:设货轮按北偏西的方向航行分钟后处,,
得,速度为
海里/小时.3.函数在上总有,则a的取值范围是(
)
A.或 B.
C.或
D.或参考答案:C略4.算法的有穷性是指(
)A.算法必须包含输出
B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限
D.以上说法均不正确参考答案:C5.(
)A.
B.
C.
D.参考答案:B6.过抛物线y2=4x的焦点的直线交抛物线于A、B两点,O为坐标原点,则·的值是(
)A.12
B.-12
C.3 D.-3参考答案:解析:焦点F(1,0),lAB:y=k(x-1),代入y2=4xk2x2-(2k2+4)x+k2=0,·=x1x2+y1y2=(k2+1)x1x2-k2(x1+x2)+k2=-3.
答案:D7.已知数列,那么9是数列的(
)A.第12项
B.第13项
C.第14项
D.第15项参考答案:C8.若点A(1,m-1,1)和点B(-1,-3,-1)关于原点对称,则m=(
)A.-4
B.4
C.2
D.-2参考答案:B因为点A(1,m-1,1)和点B(-1,-3,-1)关于原点对称,所以m-1=3,即m=4.9.若直线l:y=kx+1被圆C:x2+y2﹣2x﹣3=0截得的弦最短,则直线l的方程是()A.x=0 B.y=1 C.x+y﹣1=0 D.x﹣y+1=0参考答案:D【考点】直线与圆的位置关系.【分析】直线过定点(0,1),截得的弦最短,圆心和弦垂直,求得斜率可解得直线方程.【解答】解:直线l是直线系,它过定点(0,1),要使直线l:y=kx+1被圆C:x2+y2﹣2x﹣3=0截得的弦最短,必须圆心(1,0)和定点(0,1)的连线与弦所在直线垂直;连线的斜率﹣1,弦的所在直线斜率是1.则直线l的方程是:y﹣1=x故选D.10.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n?α,则m⊥nC.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α参考答案:B【考点】空间中直线与直线之间的位置关系.【专题】空间位置关系与距离.【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n?α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n?α,故C错;D.若m∥α,m⊥n,则n∥α或n?α或n⊥α,故D错.故选B.【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.二、填空题:本大题共7小题,每小题4分,共28分11.已知正数数列()定义其“调和均数倒数”(),那么当时,=_______________.参考答案:12.(普通班).点(x,y)在直线x+3y-2=0上,则最小值为
参考答案:913.给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为
▲
.参考答案:
14.矩阵M=,则
参考答案:15.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为
;
参考答案:0.12816.把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则P(B|A)=________.参考答案:略17.在△ABC中,2sinAcosB=sinC,那么△ABC一定是*****
.参考答案:等腰三角形
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△ABC的两个顶点A,B的坐标分别是(-5,0),(5,0),且AC,BC所在直线的斜率之积等于m(m≠0),求顶点C的轨迹.参考答案:设点C的坐标为,由已知,得直线AC的斜率,直线BC的斜率,由题意得,所以
即
当时,点C的轨迹是椭圆,或者圆,并除去两点当时,点C的轨迹是双曲线,并除去两点略19.(本小题满分15分)在如图所示的多面体中,已知正三棱柱ABC-A1B1C1的所有棱长均为2,四边形ABDC是菱形.(1)求证:平面ADC1⊥平面BCC1B1;(2)求该多面体的体积.
参考答案:(1)证:由正三棱柱,得,而四边形是菱形,所以,又平面且,所以平面…5分则由平面,得平面平面……7分(2)因为正三棱柱的体积为………10分四棱锥的体积为……………13分所以该多面体的体积为……………15分20.已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且?=0,△GF1F2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)由椭圆的离心率为、点G在椭圆上、?=0及△GF1F2的面积为2列式求得a2=4,b2=2,则椭圆方程可求;(Ⅱ)联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系得到A,B两点横坐标的和与积,把转化为含有k的代数式,利用基本不等式求得使取得最大值的k,则直线Γ的方程可求.【解答】解:(Ⅰ)∵椭圆+=1(a>b>0)的离心率为,∴e=,①∵左右焦点分别为F1、F2,点G在椭圆上,∴||+||=2a,②∵?=0,△GF1F2的面积为2,∴||2+||2=4c2,③,④联立①②③④,得a2=4,b2=2,∴椭圆C的方程为;(Ⅱ)联立,得(1+2k2)x2﹣4k2x+2k2﹣4=0.设A(x1,y1),B(x2,y2),∴.===,当且仅当时,取得最值.此时l:y=.21.如图组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与、重合一个点.(Ⅰ)求证:无论点如何运动,平面平面;(Ⅱ)当点是弧的中点时,求四棱锥与圆柱的体积比.
参考答案:略22.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024明江国际大酒店合同
- 心肌炎心包炎病人的护理
- 《swot分析图表》课件
- 新高考英语|专题复习应用文之图表式作文课件:以2022年全国乙卷为例-2025届高三英语作文专项复习
- 新高考英语|读后续写素材积累之预示和再现 课件-2025届高三英语作文专项复习
- 2024【合同范本】有限责任公司章程(设董事会、监事会的有限责任公司)
- 心理健康教育促成长
- 2024单机软件买卖合同
- 湖北大学知行学院《财政学》2023-2024学年第一学期期末试卷
- 《短信互动平台案例》课件
- 企业资产管理培训
- 公文写作课件教学课件
- 2024年巴西医疗健康产业发展趋势
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年6月浙江省高考地理试卷真题(含答案逐题解析)
- 中考语文专项必刷题之名著阅读专题(天津版)
- 2024版合伙经营运输车辆合同范本
- 热点主题作文写作指导:多一些尊重理解少一些偏见误解(审题指导与例文)
- +Unit+2+We're+family+Section+A+2a+-+2e+说课稿 人教版(2024)七年级英语上册++
- 防性侵安全教育课件
- 《篮球:行进间单手肩上投篮》教案(四篇)
评论
0/150
提交评论