版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的最大(小)值与导数数学教研组苏远作业小结求可导函数f(x)极值的步骤:(2)求导数f’(x);(3)求方程f’(x)=0的根;(4)把定义域划分为部分区间,并列成表格(1)确定函数的定义域;上节内容回顾一是利用函数性质二是利用不等式三今天学习利用导数
求函数最值的一般方法:函数最值问题二、新课—最大值与最小值xX2oaX3bx1y观察右边一个定义在区间[a,b]上的函数y=f(x)的图象,你能找出函数y=f(x)在区间[a,b]上的最大值、最小值吗?发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。二、新课—最大值与最小值观察右边一个定义在区间[a,b]上的函数y=f(x)的图象,你能找出函数y=f(x)在区间[a,b]上的最大值、最小值吗?发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。二、新课—最大值与最小值观察右边一个定义在区间[a,b]上的函数y=f(x)的图象,你能找出函数y=f(x)在区间[a,b]上的最大值、最小值吗?xX2oaX3bx1y典例解析教材30页例5一般地,求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下:①:求y=f(x)在(a,b)内的极值(极大值与极小值);
②:将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个为最大值,最小的一个为最小值.求函数最值的步骤(1)函数的极值是在局部范围内讨论问题,是一个局部概
念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.(2)闭区间[a,b]上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个。极值与最值的区别课堂练习教材31页练习题
导数法求函数的最值:②:将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个为最大值,最小的一个为最小值.课堂小结①:求y=f(x)在(a,b)内的极值(极大值与极小值);
作业布置
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚纱租借协议3篇
- 口罩购买销售合同3篇
- 医疗软件销售合同范例
- 楼盘卖买合同范例
- 武汉体育学院《汽车机械设计基础课程设计》2023-2024学年第一学期期末试卷
- 合伙财务合同范例
- 车辆吊装合同范例
- 武汉软件工程职业学院《测量学5》2023-2024学年第一学期期末试卷
- 明代勋臣制度研究读书笔记
- 武汉民政职业学院《液压传动与采掘机械》2023-2024学年第一学期期末试卷
- 《高铁酸钾的制备》课件
- 上海交通大学2003年481物理化学考研真题
- 公司财务预算报告
- 上海财经大学《801经济学》历年考研真题及详解
- 金桥焊材产品质量证明书-可-编-辑
- 国家一等奖《纪念刘和珍君》教学设计
- 2023年医疗机构消毒技术规范
- 小学生主题班会 忆伟人故事展少年风采-纪念伟大领袖毛主席诞辰130周年 课件(共33张PPT内嵌视频)
- 专题06课内阅读(解析版)-2021-2022年(两年真题)全国三年级上学期语文期末试卷分类汇编
- 专题复习一(内能及内能的应用)
- 刹车盘毕业设计
评论
0/150
提交评论