北师大选修空间向量运算的坐标表示张_第1页
北师大选修空间向量运算的坐标表示张_第2页
北师大选修空间向量运算的坐标表示张_第3页
北师大选修空间向量运算的坐标表示张_第4页
北师大选修空间向量运算的坐标表示张_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

会计学1北师大选修空间向量运算的坐标表示张第1页/共30页一二三思考辨析一、向量加减法和数乘的坐标表示设a=(x1,y1,z1),b=(x2,y2,z2),则(1)a+b=(x1+x2,y1+y2,z1+z2),即空间两个向量和的坐标等于它们对应坐标的和.(2)a-b=(x1-x2,y1-y2,z1-z2),即空间两个向量差的坐标等于它们对应坐标的差.(3)λa=(λx1,λy1,λz1)(λ∈R),即实数与空间向量数乘的坐标等于实数与向量对应坐标的乘积.(4)若b≠0,则a∥b⇔a=λb⇔x1=λx2,y1=λy2,z1=λz2(λ∈R).(5)设A(x1,y1,z1),B(x2,y2,z2),则

=(x2-x1,y2-y1,z2-z1),空间向量的坐标等于终点与起点对应坐标的差.第2页/共30页一二三思考辨析名师点拨1.空间向量的坐标运算类似于平面向量的坐标运算,只是由二维变成了三维,所以空间向量的坐标运算与平面向量的坐标运算类似.2.理解共线向量定理的条件和结论,在用坐标表示时,要注意等价变形.3.已知a=(a1,a2,a3),b=(b1,b2,b3),若b1,b2,b3都不为0,则a∥b⇔第3页/共30页一二三思考辨析【做一做1】

已知向量a=(3,2,-1),b=(2,1,5),则a+b=

,a-b=

,2a-3b=

.

解析:a+b=(3,2,-1)+(2,1,5)=(5,3,4),a-b=(3,2,-1)-(2,1,5)=(1,1,-6),2a-3b=2(3,2,-1)-3(2,1,5)=(6,4,-2)-(6,3,15)=(0,1,-17).答案:(5,3,4)

(1,1,-6)

(0,1,-17)【做一做2】

已知a=(1,5,-1),b=(-2,3,5),则使(ka+b)∥(a-3b)成立的k的值为

.

解析:ka+b=(k-2,5k+3,-k+5),a-3b=(1+3×2,5-3×3,-1-3×5)=(7,-4,-16).∵(ka+b)∥(a-3b),第4页/共30页一二三思考辨析二、数量积的坐标表示设a=(x1,y1,z1),b=(x2,y2,z2),则a·b=x1x2+y1y2+z1z2,空间两个向量的数量积等于它们对应坐标的乘积之和.【做一做3】

已知a=(-2,5,3),b=(-4,2,x),且a·b=0,则x=(

)A.-4 B.-6C.-8 D.6解析:a·b=-2×(-4)+5×2+3x=0⇒x=-6.答案:B第5页/共30页一二三思考辨析三、空间向量长度与夹角的坐标表示设a=(x1,y1,z1),b=(x2,y2,z2),则(3)a⊥b⇔x1x2+y1y2+z1z2=0.第6页/共30页一二三思考辨析【做一做4】

若a=(1,λ,2),b=(2,-1,2),且a与b的夹角的余弦值为,则λ等于(

)解析:因为a·b=1×2+λ×(-1)+2×2=6-λ,答案:C第7页/共30页一二三思考辨析判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(3)空间向量a=(1,1,1)是一个单位向量.(

)(4)若a,b为空间向量,则(a+b)·(a-b)=a2-b2.(

)×××√第8页/共30页探究一探究二探究三思维辨析向量运算的坐标表示【例1】

已知a=(2,-1,-2),b=(0,-1,4),求a+b,a-b,3a+2b,a·b.解:因为a=(2,-1,-2),b=(0,-1,4),所以a+b=(2,-1,-2)+(0,-1,4)=(2+0,-1+(-1),-2+4)=(2,-2,2);a-b=(2,-1,-2)-(0,-1,4)=(2-0,-1-(-1),-2-4)=(2,0,-6);3a+2b=3(2,-1,-2)+2(0,-1,4)=(3×2,3×(-1),3×(-2))+(2×0,2×(-1),2×4)=(6,-3,-6)+(0,-2,8)=(6,-5,2);a·b=(2,-1,-2)·(0,-1,4)=2×0+(-1)×(-1)+(-2)×4=0+1-8=-7.第9页/共30页探究一探究二探究三思维辨析反思感悟空间向量的坐标运算方法1.在运算中注意相关公式的灵活运用,如(a+b)·(a-b)=a2-b2=|a|2-|b|2,(a+b)·(a+b)=(a+b)2等;2.进行向量坐标运算时,可以先代入坐标再运算,也可先进行向量式的化简再代入坐标运算,如计算(2a)·(-b),既可以利用运算律把它化成-2(a·b),也可以先求出2a,-b后,再求数量积.计算(a+b)·(a-b),既可以先求出a+b,a-b后,再求数量积,也可以把(a+b)·(a-b)写成a2-b2后计算.第10页/共30页探究一探究二探究三思维辨析变式训练1已知在空间直角坐标系中,A(1,-2,4),B(-2,3,0),C(2,-2,-5).解:(1)因为A(1,-2,4),B(-2,3,0),C(2,-2,-5),第11页/共30页探究一探究二探究三思维辨析第12页/共30页探究一探究二探究三思维辨析空间向量的平行与垂直【例2】设向量a=(1,x,1-x),b=(1-x2,-3x,x+1),求满足下列条件时,实数x的值.(1)a∥b;(2)a⊥b.解:(1)①当x=0时,a=(1,0,1),b=(1,0,1),a=b,满足a∥b.②当x=1时,a=(1,1,0),b=(0,-3,2),不满足a∥b,∴x≠1.③当x≠0,且x≠1时,综上所述,当x=0或x=2时,a∥b.第13页/共30页探究一探究二探究三思维辨析(2)a⊥b⇔a·b=0,∴(1,x,1-x)·(1-x2,-3x,x+1)=0⇔1-x2-3x2+1-x2=0,反思感悟要熟练掌握向量平行和垂直的条件,借助此条件可将立体几何中的平行垂直问题转化为向量的坐标运算.在应用坐标形式下的平行条件时,一定注意结论成立的前提条件,在条件不明确时要分类讨论.第14页/共30页探究一探究二探究三思维辨析变式训练2已知向量a=(2,4,5),b=(3,x,y),若a∥b,求x,y的值.解:∵a∥b,∴a=λb.第15页/共30页探究一探究二探究三思维辨析空间向量长度与夹角的坐标表示【例3】

在长方体OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=2,E是BC的中点,建立空间直角坐标系,用向量方法解决下列问题:(1)求直线AO1与B1E所成角的余弦值;(2)作O1D⊥AC于点D,求点O1到点D的距离.解:建立如图所示的空间直角坐标系.第16页/共30页探究一探究二探究三思维辨析(1)由题意得A(2,0,0),O1(0,0,2),B1(2,3,2),E(1,3,0).第17页/共30页探究一探究二探究三思维辨析反思感悟当题中的几何体为正方体、长方体、直三棱柱等时,常选择建立空间直角坐标系,利用向量的坐标运算来解决有关长度、夹角、平行或垂直等问题;有时也可以不建系,利用基底来求解,但比较麻烦.第18页/共30页探究一探究二探究三思维辨析变式训练3在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是D1D,BD的中点,G在棱CD上,且CG=CD,H为C1G的中点,求解下列问题:(1)求证:EF⊥B1C;(3)求FH的长.解:如图,建立空间直角坐标系D-xyz,D为坐标原点,第19页/共30页探究一探究二探究三思维辨析变式训练3在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是D1D,BD的中点,G在棱CD上,且CG=CD,H为C1G的中点,求解下列问题:(1)求证:EF⊥B1C;(3)求FH的长.解:如图,建立空间直角坐标系D-xyz,D为坐标原点,第20页/共30页探究一探究二探究三思维辨析第21页/共30页探究一探究二探究三思维辨析忽视两个向量夹角为锐角(钝角)的条件致误【典例】

已知a=(5,3,-1),b=,若a与b的夹角为锐角,求实数t的取值范围.易错分析:由a与b的夹角为锐角,得到a·b>0,但当a·b>0时,a与b的夹角不一定为锐角,还可能是共线同向,夹角为0°,解题时容易忽视这个条件,导致扩大了参数的范围.第22页/共30页探究一探究二探究三思维辨析纠错心得空间向量a,b夹角为锐角的充要条件是“a·b>0,且a,b不同向”;a,b夹角为钝角的充要条件是“a·b<0,且a,b不反向”.如果在求解过程中,忽视两个向量共线的情况,就有可能扩大参数的取值范围,导致错误.第23页/共30页探究一探究二探究三思维辨析变式训练已知a=(3,-2,-3),b=(-1,x-1,1),且a与b的夹角为钝角,则x的取值范围是

.

解析:∵a与b的夹角为钝角,∴a·b<0,∴3×(-1)+(-2)×(x-1)+(-3)×1<0.第24页/共30页12341.已知a=(1,0,-1),b=(1,-2,2),c=(-2,3,-1),那么向量a-b+2c=(

)A.(0,1,2) B.(4,-5,5)C.(-4,8,-5) D.(2,-5,4)解析:a-b+2c=(1,0,-1)-(1,-2,2)+2(-2,3,-1)=(-4,8,-5).答案:C第25页/共30页12342.已知a=(λ+1,0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论