版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年四川省雅安市成考专升本高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.()。A.0
B.1
C.2
D.+∞
2.
3.当x→0时,3x是x的().
A.高阶无穷小量B.等价无穷小量C.同阶无穷小量,但不是等价无穷小量D.低阶无穷小量
4.
A.
B.1
C.2
D.+∞
5.方程y"+3y'=x2的待定特解y*应取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)
6.A.
B.
C.
D.
7.微分方程y′-y=0的通解为().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
8.如图所示,在乎板和受拉螺栓之间垫上一个垫圈,可以提高()。
A.螺栓的拉伸强度B.螺栓的剪切强度C.螺栓的挤压强度D.平板的挤压强度
9.若y(x-1)=x2-1,则y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1
10.A.e
B.e-1
C.-e-1
D.-e
11.当x一0时,与3x2+2x3等价的无穷小量是().
A.2x3
B.3x2
C.x2
D.x3
12.
13.A.绝对收敛B.条件收敛C.发散D.收敛性与k有关
14.
15.设y=sin(x-2),则dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
16.
17.设函数f(x)在[a,b]上连续,则曲线y=f(x)与直线x=a,x=b,y=0所围成的平面图形的面积等于()。A.
B.
C.
D.
18.
19.设y=2x3,则dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
20.设y=sin2x,则y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
21.
A.
B.
C.
D.
22.
23.级数(k为非零正常数)().A.A.条件收敛B.绝对收敛C.收敛性与k有关D.发散
24.
25.当x→0时,与x等价的无穷小量是
A.A.
B.ln(1+x)
C.C.
D.x2(x+1)
26.在空间直角坐标系中,方程2+3y2+3x2=1表示的曲面是().
A.球面
B.柱面
C.锥面
D.椭球面
27.
28.A.A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分条件也非必要条件
29.
A.2x-2B.2y+4C.2x+2y+2D.2y+4+x2-2x
30.
A.仅有水平渐近线
B.既有水平渐近线,又有铅直渐近线
C.仅有铅直渐近线
D.既无水平渐近线,又无铅直渐近线
31.若,则下列命题中正确的有()。A.
B.
C.
D.
32.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
33.
34.设f(x)在点x0处连续,则下列命题中正确的是().A.A.f(x)在点x0必定可导B.f(x)在点x0必定不可导C.必定存在D.可能不存在
35.设y=f(x)为可导函数,则当△x→0时,△y-dy为△x的A.A.高阶无穷小B.等价无穷小C.同阶但不等价无穷小D.低阶无穷小
36.方程x2+2y2-z2=0表示的曲面是()A.A.椭球面B.锥面C.柱面D.平面
37.
38.
39.
40.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
41.微分方程y’-4y=0的特征根为()A.0,4B.-2,2C.-2,4D.2,4
42.A.0B.1C.∞D.不存在但不是∞
43.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
44.
45.设y=2-cosx,则y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
46.
47.下列命题中正确的有().
48.
49.设f(x)=x3+x,则等于()。A.0
B.8
C.
D.
50.
二、填空题(20题)51.
52.
53.
54.过点M1(1,2,-1)且与平面x-2y+4z=0垂直的直线方程为__________。
55.设z=2x+y2,则dz=______。
56.
57.
58.设y=cos3x,则y'=__________。
59.
60.
61.
62.设z=x2y+siny,=________。
63.微分方程y"+y'=0的通解为______.
64.不定积分=______.
65.
66.
67.
68.
69.
70.曲线y=x3-3x+2的拐点是__________。
三、计算题(20题)71.
72.
73.
74.证明:
75.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
76.求微分方程的通解.
77.将f(x)=e-2X展开为x的幂级数.
78.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
79.
80.
81.求函数f(x)=x3-3x+1的单调区间和极值.
82.当x一0时f(x)与sin2x是等价无穷小量,则
83.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
84.求曲线在点(1,3)处的切线方程.
85.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
86.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
87.
88.求微分方程y"-4y'+4y=e-2x的通解.
89.
90.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
四、解答题(10题)91.
92.求∫xsin(x2+1)dx。
93.
94.
95.
96.
97.
98.
99.
100.
五、高等数学(0题)101.设f(x)的一个原函数是lnz,求∫f(x)f(x)dx。
六、解答题(0题)102.
参考答案
1.B
2.C
3.C本题考查的知识点为无穷小量阶的比较.
应依定义考察
由此可知,当x→0时,3x是x的同阶无穷小量,但不是等价无穷小量,故知应选C.
本题应明确的是:考察当x→x0时无穷小量β与无穷小量α的阶的关系时,要判定极限
这里是以α为“基本量”,考生要特别注意此点,才能避免错误.
4.C
5.D本题考查的知识点为二阶常系数线性微分方程特解y*的取法.
由于相应齐次方程为y"+3y'0,
其特征方程为r2+3r=0,
特征根为r1=0,r2=-3,
自由项f(x)=x2,相应于Pn(x)eαx中α=0为单特征根,因此应设
故应选D.
6.B
7.C所给方程为可分离变量方程.
8.D
9.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,则f'(x)=2x+2.
10.B所给极限为重要极限公式形式.可知.故选B.
11.B由于当x一0时,3x2为x的二阶无穷小量,2x3为戈的三阶无穷小量.因此,3x2+2x3为x的二阶无穷小量.又由,可知应选B.
12.A
13.A本题考查的知识点为无穷级数的收敛性。
14.A解析:
15.D本题考查的知识点为微分运算.
可知应选D.
16.A
17.C
18.C
19.B由微分基本公式及四则运算法则可求得.也可以利用dy=y′dx求得故选B.
20.D本题考查的知识点为复合函数求导数的链式法则.
21.B本题考查的知识点为交换二次积分次序。由所给二次积分可知积分区域D可以表示为1≤y≤2,y≤x≤2,交换积分次序后,D可以表示为1≤x≤2,1≤y≤x,故应选B。
22.B解析:
23.A
24.D
25.B本题考查了等价无穷小量的知识点
26.D对照标准二次曲面的方程可知x2+3y2+3x2=1表示椭球面,故选D.
27.D解析:
28.B
29.B解析:
30.A
31.B本题考查的知识点为级数收敛性的定义。
32.A
33.C解析:
34.C本题考查的知识点为极限、连续与可导性的关系.
函数f(x)在点x0可导,则f(x)在点x0必连续.
函数f(x)在点x0连续,则必定存在.
函数f(x)在点x0连续,f(x)在点x0不一定可导.
函数f(x)在点x0不连续,则f(x)在点x0必定不可导.
这些性质考生应该熟记.由这些性质可知本例应该选C.
35.A由微分的定义可知△y=dy+o(△x),因此当△x→0时△y-dy=o(△x)为△x的高阶无穷小,因此选A。
36.B对照二次曲面的标准方程可知,所给曲面为锥面,因此选B.
37.C
38.D解析:
39.D
40.C
41.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根为2,-2,故选B.
42.D本题考查了函数的极限的知识点。
43.C
44.A
45.D解析:y=2-cosx,则y'=2'-(cosx)'=sinx。因此选D。
46.D
47.B解析:
48.A
49.A本题考查的知识点为定积分的对称性质。由于所给定积分的积分区间为对称区间,被积函数f(x)=x3+x为连续的奇函数。由定积分的对称性质可知
可知应选A。
50.B解析:
51.0
52.y=2x+1
53.
54.
55.2dx+2ydy
56.e-2
57.
58.-3sin3x
59.1
60.
本题考查的知识点为二元函数的偏导数.
61.762.由于z=x2y+siny,可知。
63.y=C1+C2e-x,其中C1,C2为任意常数本题考查的知识点为二阶线性常系数齐次微分方程的求解.
二阶线性常系数齐次微分方程求解的一般步骤为:先写出特征方程,求出特征根,再写出方程的通解.
微分方程为y"+y'=0.
特征方程为r3+r=0.
特征根r1=0.r2=-1.
因此所给微分方程的通解为
y=C1+C2e-x,
其牛C1,C2为任意常数.
64.
;本题考查的知识点为不定积分的换元积分法.
65.
66.ee解析:
67.
68.
69.3
70.(02)
71.
72.
73.由一阶线性微分方程通解公式有
74.
75.
76.
77.
78.由二重积分物理意义知
79.
80.
81.函数的定义域为
注意
82.由等价无穷小量的定义可知
83.
84.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
85.需求规律为Q=100ep-2.25p
∴当P=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖置换合同样式
- 债权转为股权协议
- 服务维护合同
- 专业分包合同
- 经济型固定资产购销合同
- 规范保姆服务合同样本
- 培训讲师合作协议
- 股权投资协议书范本
- 集资购房合同示例格式
- 技术服务合同的违约金计算方法
- 机械制图(山东联盟)智慧树知到期末考试答案章节答案2024年山东华宇工学院
- 在线网课《马克思主义新闻思想(河北)》单元测试考核答案
- 2024年海南省海口四中高三3月份第一次模拟考试化学试卷含解析
- 人员招聘计划方案
- 突发性聋护理
- 南财公共英语3级第三套试卷
- 2024年舟山继续教育公需课考试题库
- 小学二年级美术上册《节日的装饰》课件
- 2023年1月广东省自考00850广告设计基础试题及答案含解析
- 夫妻共有房屋出售合同合集3篇
- 康复科出院指导及健康宣教
评论
0/150
提交评论