河北省唐山市遵化石门镇中学2022年高二数学理联考试题含解析_第1页
河北省唐山市遵化石门镇中学2022年高二数学理联考试题含解析_第2页
河北省唐山市遵化石门镇中学2022年高二数学理联考试题含解析_第3页
河北省唐山市遵化石门镇中学2022年高二数学理联考试题含解析_第4页
河北省唐山市遵化石门镇中学2022年高二数学理联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市遵化石门镇中学2022年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.曲线在点处的切线与坐标轴所围三角形的面积为(

)A. B. C. D.参考答案:A分析:先求切线斜率,再根据点斜式得切线方程,最后根据切线与坐标轴交点坐标,求三角形面积.详解:因为,所以,所以切线方程为,因此与坐标轴交点为,围三角形的面积为选A.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.2.如图,在四面体中,截面是正方形,则在下列命题中,错误的是A.

B.∥截面

C.

D.异面直线与所成的角为参考答案:C3.设x,y∈R*且xy﹣(x+y)=1,则(

)A.xy≤+1 B.x+y≥2(+1) C.xy≥2(+1) D.x+y≤(+1)2参考答案:B【考点】基本不等式.【专题】计算题.【分析】先根据均值不等式可知xy≤,代入xy=1+x+y中,转化为关于x+y的一元二次不等式,进而求得x+y的最小值,同理求得xy的最小值,即可得到答案.【解答】解:∵x,y∈R+,∴xy≤(当且仅当x=y时成立).∵xy=1+x+y,∴1+x+y≤,解得x+y≥2+2或x+y≤2﹣2(舍),B符合题意,可排除D;同理,由xy=1+x+y,得xy﹣1=x+y≥2(当且仅当x=y时成立),解得≥1+或≤1﹣(舍),即xy≥3+2从而排除A,C.故选B.【点评】本题主要考查了基本不等式在最值问题中的应用.利用基本不等式和整体思想转化为一元二次不等式,再由一元二次不等式的解法进行求解,有较强的综合性.4.

试说明图中的算法流程图的设计是求什么?参考答案:求非负数a的算术平方根.5.已知如右程序框图,则输出的值是A.

B.

C.

D.参考答案:C6.已知是定义在上的奇函数,当时,.则函数的零点的集合为A.

B.

C.

D.参考答案:D7.已知i为虚数单位,则复数等于()A.﹣1+i B.1﹣i C.2+2i D.1+i参考答案:A【考点】复数代数形式的混合运算.【分析】复数的分子、分母同乘分母的共轭复数,虚数单位i的幂运算性质,把式子化简到最简形式.【解答】解:复数===﹣1+i,故选A.8.设a,β,γ是三个互不重合的平面,m,n是直线,给出下列命题①若a⊥β,β⊥γ,则a⊥γ;②若a∥β,m?β,m∥a,则m∥β;③若m,n在γ内的射影互相垂直,则m⊥n;④若m∥a,n∥β,a⊥β则m⊥n.其中正确命题的个数为(

)A.0 B.1 C.2 D.3参考答案:B考点:平面的基本性质及推论.专题:证明题.分析:在正方体中举出反例,可以得到命题①和命题③是错误的;根据平面与平面平行和直线与平面平行的定义,得到②是正确的;根据直线与平面平行的判定和空间直线平行的传递性,通过举出反例可得④是错误的.由此可得正确答案.解答:解:对于命题①,若a⊥β,β⊥γ,则a与γ的位置不一定是垂直,也可能是平行,比如:正方体的上、下底面分别是a与γ,右侧面是β则满足a⊥β,β⊥γ,但a∥γ,∴“a⊥γ”不成立,故①不正确;对于命题②,∵a∥β,m?β∴平面a与直线m没有公共点因此有“m∥a”成立,故②正确;对于命题③,可以举出如下反例:在正方体中,设正对我们的面为γ,在左侧面中取一条直线m,上底面中取一条直线n,则m、n都与平面γ斜交时,m、n在γ内的射影必定互相垂直,显然“m⊥n”不一定成立,故③不正确;对于命题④,因为a⊥β,所以它们是相交平面,设a∩β=l当m∥a,n∥β时,可得直线l与m、n都平行,所以m∥n,“m⊥n”不成立,故④不正确.因此正确命题只有1个.故选B点评:本题借助于命题真假的判断为载体,着重考查了平面与平面垂直的定义与性质、直线与平面平行的判定定理和直线在平面中的射影等知识点,属于基础题9.定义在R上的函数满足,且当时,,对,,使得,则实数a的取值范围为(

)A. B.C. D.参考答案:D由题知问题等价于函数在上的值域是函数在上的值域的子集.当时,,由二次函数及对勾函数的图象及性质,得此时,由,可得,当时,.则在的值域为.当时,,则有,解得,当时,,不符合题意;当时,,则有,解得.综上所述,可得的取值范围为.故本题答案选.点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该不重复不遗漏.10.已知直线y=﹣x+1与椭圆+=1(a>b>0)相交于A、B两点,若椭圆的离心率为,焦距为2,则线段AB的长是()A. B. C. D.2参考答案:B【考点】直线与圆锥曲线的关系.【分析】求出椭圆的方程为+y2=1,联立得出A(0,1),B(,),即可得出两点距离.【解答】解:∵e=,2c=2,c=1∴a=,c=1,则b==1,∴椭圆的方程为+y2=1,联立化简得:3x﹣4x=0,x=0,或x=,代入直线得出y=1,或y=则A(0,1),B(,)∴|AB|=,故选:B二、填空题:本大题共7小题,每小题4分,共28分11.若输入8,则下列程序执行后输出的结果是________。参考答案:0.712.若命题:方程有两不等正根;:方程无实根.求使为真,为假的实数的取值范围____________.参考答案:13.在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC,则异面直线PC与AB所成角的大小是

.参考答案:60°

14.函数的单调递减区间为

.参考答案:略15.若函数,(-2<x<14)的图象与x轴交于点A,过点A的直线与函数的图象交于B、C两点,则=.(其中O为坐标原点)参考答案:7216.已知;,若是的充分条件,则的取值范围为

.参考答案:17.已知函数(为常数)。若在区间上是增函数,则的取值范围是

。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面.

(1)求证:⊥平面;(2)求点到平面的距离.

参考答案:(1)平面ACE.

∵二面角D—AB—E为直二面角,且,平面ABE.又∵,BF平面BCE,CB平面BCE,

------------4分设平面AEC的一个法向量为,则解得

令得是平面AEC的一个法向量.

∵AD//z轴,AD=2,∴,∴点D到平面ACE的距离

---------12分19.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是=﹣0.7x+a,求a的值.参考答案:5.25【考点】线性回归方程.【分析】首先求出x,y的平均数,根据所给的线性回归方程知道b的值,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程即可.【解答】解:=(1+2+3+4)=2.5,=(4.5+4+3+2.5)=3.5,将(2.5,3.5)代入线性回归直线方程是=﹣0.7x+a,可得3.5=﹣1.75+a,故a=5.25.20.如图,直平行六面体ADD1A1-BCC1B1中,BC=1,CC1=2,.(Ⅰ)求证:;(Ⅱ)当E为CC1的中点时,求二面角A-EB1-A1的平面角的余弦值.参考答案:(Ⅰ)由题意知,底面由余弦定理有故有……4分而,

(Ⅱ)由(Ⅰ)知,

以为轴,为坐标原点建立坐标系,

则,

由题意知,,由勾股定理得,又,,故为的一个法向量,.设的法向量为.得一个法向量为.故21.已知函数为奇函数,,且不等式≤≤的解集是.(1)求;(2)是否存在实数使不等式对一切R成立?若成立,求出的取值范围;若不存在,请说明理由.参考答案:解析:

(Ⅰ)是奇函数对定义域内一切都成立

从而.又.再由得或从而确定.此时,在上是增函数(注:此处单调性若不证明,可不扣分),注意到,则必有,即,∴.综上知,.法2:确定(同法1),则≤≤≤≤由题设知,不等式组(1)的解集必为,不等式组(2)的解集必为,从而求得.(Ⅱ)由(Ⅰ),,它在以及上均为增函数,而≤≤,所以的值域为,符合题设的实数应满足:,即,故符合题设的实数不存在.22.如图,在直三棱柱中,,,分别是,的中点.(1)求证:∥平面;(2)求证:平面平面.参考答案:(Ⅰ)详见解析(Ⅱ)详见解析试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需要结合平几知识,如三角形中位线性质,及利用柱体性质,如上下底面对应边相互平行(Ⅱ)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,往往需要利用线面垂直判定与性质定理进行多次转化:由直棱柱性质得侧棱垂直于底面:底面,再转化为线线垂直;又根据线线平行,将线线垂直进行转化,再根据线面垂直判定定理得平面试题解析:证明:(1)因为,分别是,的中点,所以,...........2分又因为在三棱柱中,,所以................4分又平面,平面,所以∥平面................6分(2)在直三棱柱中,底面,又底面,所以..............8分又,,所以,..

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论