版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省湛江市徐闻县立品中学2022年度高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数在上满足,则的取值范围是(
) A. B.
C. D.参考答案:A略2.正项等比数列{an}满足:a3=a2+2a1,若存在am,an,使得am?an=16a12,则的最小值为()A.2 B.16 C. D.参考答案:C【考点】等差数列的性质;等比数列的通项公式.【分析】正项等比数列{an}满足:a3=a2+2a1,知q=2,由存在两项am,an,使得aman=16a12,知m+n=6,由此问题得以解决.【解答】解:∵正项等比数列{an}满足:a3=a2+2a1,∴a1q2=a1q+2a1,即:q2=q+2,解得q=﹣1(舍),或q=2,∵存在am,an,使得aman=16a12,∴a12?2m+n﹣2=16a12,∴m+n=6,∴=(m+n)()=(10++)≥(10+2)=∴的最小值为.故选:C.【点评】本题考查等比数列的通项公式的应用,解题时要认真审题,仔细解答.注意不等式也是高考的热点,尤其是均值不等式和一元二次不等式的考查,两者都兼顾到了.3.下列几何体各自的三视图,其中有且仅有两个三视图完全相同的是(
)
A.①② B.②④ C.①③ D.①④
参考答案:B4.已知,则f(5)为(▲)A.1B.2C.3D.4参考答案:A5.数列满足且对任意的都有则
(
)A.
B.
C.
D.参考答案:B略6.已知集合集合则(
)A.
B.
C.
D.参考答案:C7.已知。给出下列不等式:①;②;③;④;⑤。其中恒成立的不等式的个数为
(
)(A)4
(B)3
(C)2
(D)1参考答案:B8.α是一个任意角,则α与-α的终边是(
)A.关于坐标原点对称
B.关于x轴对称
C.关于直线y=x对称
D.关于y轴对称
参考答案:B9.下列表示错误的是(
)(A)
(B)
(C)
(D)若则参考答案:C略10.把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最小值是(
)A B C
D参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.(4分)函数f(x)=cos2x﹣2sinx?cosx的最小正周期是
.参考答案:π考点: 三角函数的周期性及其求法.专题: 计算题.分析: 利用倍角公式对函数解析式进行化简,由求函数周期的公式求解.解答: 由题意知,f(x)=cos2x﹣2sinx?cosx=cos2x﹣sin2x=2cos(2x+),∴函数的最小正周期是π.故答案为π.点评: 本题考查了复合三角函数的周期的求法,即化简函数解析式后利用公式求解.12.如果幂函数f(x)=xa的图象经过点(2,),则f(4)的值等于.参考答案:2【考点】幂函数的概念、解析式、定义域、值域.【分析】求出幂函数的解析式,然后求解函数值即可.【解答】解:幂函数f(x)=xa的图象经过点(2,),所以,解得a=.函数的解析式为:f(x)=.f(4)==2.故答案为:2.13.设是等差数列的前n项和,已知与的等比中项为,与的等差中项为1,则等差数列的通项为
.参考答案:an=1或an=
14.把一个正方形等分成九个相等的小正方形,将中间的一个正方形挖掉如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间一个挖掉,得图(2);如此继续下去……,第三个图中共挖掉
个正方形;第n个图中被挖掉的所有小正方形个数为
.
参考答案: 73
略15.设函数的最小值为-1,则a的取值范围是___________.参考答案:.【分析】确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,16.已知函数,则f(f(1))=.参考答案:﹣1【考点】分段函数的应用;函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】直接利用分段函数,逐步求解函数值即可.【解答】解:函数,则f(f(1))=f(3﹣4)=f(﹣1)=﹣1.故答案为:﹣1.【点评】本题考查导函数的应用,函数值的求法,考查计算能力.17.一个长为8cm,宽为6cm,高为10cm的密封的长方体盒子中放一个半径为1cm的小球,无论怎样摇动盒子,则小球在盒子中总不能到达的空间的体积为cm3.参考答案:【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;球的体积和表面积.【专题】计算题;方程思想;综合法;立体几何.【分析】小球在盒子不能到达的空间要分以下几种情况,在长方体顶点处的小正方体中,其体积等于小正方体体积减球的体积,再求出在以长方体的棱为一条棱的12个的四棱柱空间内小球不能到达的空间,其他空间小球均能到达,即可得到结果.【解答】解:在长方体的8个顶点处的单位立方体空间内,小球不能到达的空间为:8[1﹣]=8﹣,除此之外,在以长方体的棱为一条棱的12个的四棱柱空间内,小球不能到达的空间共为4[1×1×6+1×1×4+1×1×8﹣]=72﹣18π.其他空间小球均能到达.故小球不能到达的空间体积为.故答案为:.【点评】本题考查的知识点是球的体积,棱柱的体积,其中熟练掌握棱柱和不堪的几何特征,建立良好的空间想象能力是解答本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在中,内角对边的长分别是,且。(1)若的面积等于,求;(2)若,求的面积。
参考答案:略19.(10分)定义:已知函数f(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数f(x)在[m,n](m<n)上具有“DK”性质.(1)判断函数f(x)=x2-2x+2在[1,2]上是否具有“DK”性质,说明理由.(2)若f(x)=x2-ax+2在[a,a+1]上具有“DK”性质,求a的取值范围.参考答案:20.某重点中学100位学生在市统考中的理科综合分数,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求理科综合分数的众数和中位数;(3)在理科综合分数为[220,240),[240,260),[260,280),[280,300]的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[220,240)的学生中应抽取多少人?参考答案:(1)0.0075(2)230,224(3)5人试题分析:(1)根据直方图求出x的值即可;(2)根据直方图求出众数,设中位数为a,得到关于a的方程,解出即可;(3)分别求出[220,240),[240,260),[260,280),[280,300]的用户数,根据分层抽样求出满足条件的概率即可.试题解析:(1)由,解得,∴直方图中的值为.(2)理科综合分数的众数是,∵,∴理科综合分数的中位数在内,设中位数为,则,解得,即中位数为.(3)理科综合分数在的学生有(位),同理可求理科综合分数为,,的用户分别有15位、10位、5位,故抽取比为,∴从理科综合分数在的学生中应抽取人.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.已知函数⑴若对一切实数x恒成立,求实数a的取值范围。⑵求在区间上的最小值的表达式。参考答案:解:⑴由对恒成立,即恒成立∴∴实数a的取值范围为……5分⑵∵1°:当时,
2°:当时,……10分……12分22.某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元()满足(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将该产品的年利润y万元表示为年促销费用m万元的函数;(2)该厂家年促销费用投入多少万元时,厂家的利润最大?参考答案:(1);(2)厂家年促销费用投入3万元时,厂家的利润最大【分析】(1)先求出,利用题设中给出的计算公式可得故.(2)利用基本不等式可求函数的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024广西玉林市容县冬季赴高校公开招聘教师19人补充笔试备考试题及答案解析
- 电影发行合同范本完整版3篇
- 2024年度医药研发合作合同3篇
- 2024年度大蒜购销:农产品供需协议书
- 二零二四年度玻璃幕墙工程保险合同
- 常见劳动合同范本(04版)
- 二零二四年物联网平台建设与技术合作合同3篇
- 仓库物业转让合同范本2024年度特供
- 拆迁烂尾楼施工合同范本3篇
- 二零二四年度常州仓储物流服务合同范本
- 监理的质量控制体系
- 国家开放大学《教育组织行为与管理案例》大作业参考答案
- 学科分析:中等职业教育“康养休闲旅游服务”专业学科分析
- 【小学数学】人教版二年级上册数学《认识时间》知识点汇总+练习题
- 应急处理-学校安全防范与突发事件应急处置资料课件
- 中风病-《中医内科学》
- GB/T 3780.15-2016炭黑第15部分:甲苯抽出物透光率的测定
- GB/T 36277-2018电动汽车车载静止式直流电能表技术条件
- 安全检查记录表-等保制度模板
- 地理高三一轮复习试卷讲评公开课课件
- 高考地理热点问题-光伏治沙-课件
评论
0/150
提交评论