2021-2022学年广西融水苗族自治县中学高考数学押题试卷含解析_第1页
2021-2022学年广西融水苗族自治县中学高考数学押题试卷含解析_第2页
2021-2022学年广西融水苗族自治县中学高考数学押题试卷含解析_第3页
2021-2022学年广西融水苗族自治县中学高考数学押题试卷含解析_第4页
2021-2022学年广西融水苗族自治县中学高考数学押题试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行下面的程序框图,如果输入,,则计算机输出的数是()A. B. C. D.2.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.3.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.4.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.5.下列函数中,在区间上为减函数的是()A. B. C. D.6.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米7.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.8.设全集,集合,,则()A. B. C. D.9.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.510.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为().A. B. C. D.11.设a=log73,,c=30.7,则a,b,c的大小关系是()A. B. C. D.12.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.9二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小正周期是_______________,单调递增区间是__________.14.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为______.15.已知实数满约束条件,则的最大值为___________.16.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,,求的值.18.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?19.(12分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.20.(12分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.21.(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、、的表达式;(2)试确定使用哪种运输工具总费用最省.22.(10分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【详解】本程序框图的功能是计算,中的最大公约数,所以,,,故当输入,,则计算机输出的数是57.故选:B.【点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.2.D【解析】

利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.3.C【解析】

需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题4.D【解析】

根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.5.C【解析】

利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.6.D【解析】

根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.7.C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8.B【解析】

可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.9.D【解析】

利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,.解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.10.C【解析】

由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值.【详解】解:把函数的图象向右平移个单位长度得到函数的图象,若函数在区间,上单调递增,在区间,上,,,则当最大时,,求得,故选:C.【点睛】本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题.11.D【解析】

,,得解.【详解】,,,所以,故选D【点睛】比较不同数的大小,找中间量作比较是一种常见的方法.12.D【解析】

根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【详解】∵是定义是上的奇函数,满足,,可得,

函数的周期为3,

∵当时,,

令,则,解得或1,

又∵函数是定义域为的奇函数,

∴在区间上,有.

由,取,得,得,

∴.

又∵函数是周期为3的周期函数,

∴方程=0在区间上的解有共9个,

故选D.【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.,,【解析】

化简函数的解析式,利用余弦函数的图象和性质求解即可.【详解】函数,最小正周期,令,,可得,,所以单调递增区间是,,.故答案为:,,,.【点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题.14.【解析】

设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程.【详解】解:设以直线为渐近线的双曲线的方程为,∵双曲线经过抛物线焦点,∴,∴双曲线方程为,故答案为:.【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题.15.8【解析】

画出可行域和目标函数,根据平移计算得到答案.【详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.16.【解析】

基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率.【详解】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,分别为:,,,,,,,,,,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为.故答案为:【点睛】本题考查古典概型概率的求法,考查运算求解能力,求解时注意辨别概率的模型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)2.【解析】

(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.【详解】(1)由可得,即,即,曲线的直角坐标方程为,由直线的参数方程(t为参数),消去得,即直线的普通方程为.(Ⅱ)点的直角坐标为,则点在直线上.将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,直线与曲线交于两点,,即.设点所对应的参数分别为,由韦达定理可得,.点在直线上,,.【点睛】本题考查参数方程、极坐标方程和普通方程的互化及应用,属于中档题.18.(1)(2)①②第一种抽奖方案.【解析】

(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率(2)①分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可②根据①得出结论.【详解】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)①若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获得返金劵金额为元,则可能的取值为60,100,140,180.则;;;.所以选择抽奖方案一,该顾客获得返金劵金额的数学期望为(元)若选择抽奖方案二,设三次摸球的过程中,摸到红球的次数为,最终获得返金劵的金额为元,则,故所以选择抽奖方案二,该顾客获得返金劵金额的数学期望为(元).②即,所以该超市应选择第一种抽奖方案【点睛】本题主要考查了古典概型,相互独立事件的概率,二项分布,期望,及概率知识在实际问题中的应用,属于中档题.19.(1)见解析;(2)【解析】

分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.详解:(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论