




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省江门市台山都斛中学2022年高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合A={1,2,},集合B={y|y=x2,x∈A},则A∩B=()A.{} B.{2} C.{1} D.?参考答案:C【考点】交集及其运算.【专题】集合.【分析】将A中的元素代入集合B中的等式中求出y的值,确定出B,求出A与B的交集即可.【解答】解:当x=1时,y=1;当x=2时,y=4;当x=时,y=,∴B={1,4,},∴A∩B={1}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.如果,那么(
)A.y<x<1 B.x<y<1 C.1<y<x D.1<x<y参考答案:C【考点】指、对数不等式的解法.【专题】转化思想;数形结合法;不等式的解法及应用.【分析】由对数的运算性质可化原不等式为log2x>log2y>log21,由对数函数的单调性可得.【解答】解:原不等可化为﹣log2x<﹣log2y<0,即log2x>log2y>0,可得log2x>log2y>log21,由对数函数ylog2x在(0,+∞)单调递增可得x>y>1,故选:C.【点评】本题考查指对不等式的解法,涉及对数的运算性质和对数函数的单调性,属基础题.3.在复平面内,复数对应的点的坐标为(
)
A.
B.
C.
D.参考答案:A4.双曲线﹣=1(a>0,b>0)的右焦点为F,过F且垂直于x轴的直线与双曲线的渐近线在第一象限交于点A,点O为坐标原点,点H满足?=0,=4,则双曲线的离心率为()A. B. C.2 D.3参考答案:C【考点】双曲线的简单性质.【分析】利用射影定理,确定c=|OA|,可得∠AOF=60°,=tan60°=,即可求出双曲线的离心率.【解答】解:由射影定理可得,|OF|2=|OH|?|OA|,∵=4,∴c=|OA|,∴∠AOF=60°,∴=tan60°=,∴c==2a,∴e==2,故选:C.5.在椭圆中,分别是其左右焦点,若椭圆上存在一点P使得,则该椭圆离心率的取值范围是(
)A.
B.
C.
D.参考答案:B6.下列函数中,定义域是R且为增函数的是(
)A.
B.
C.
D.||参考答案:B略7.已知,设直线是曲线的一条切线,则(
)A.且
B.且C.且
D.且参考答案:C8.(3)如图所示,程序据图(算法流程图)的输出结果为(A) (B)(C)
(D) 参考答案:C;
;
,输出所以答案选择C9.双曲线C:的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40° B.2cos40° C. D.参考答案:D根据题意可知,所以,离心率.
10.若双曲线y2=4(m>0)的焦距为8,则它的离心率为
A.
B.2
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=_______参考答案:略12.若函数的单调递增区间是,则=________。参考答案:【命题立意】本题考查函数的性质,利用单调性求参数的值。由对称性:。13.已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.参考答案:{a|a<0或a>1}【考点】函数的零点.【专题】计算题;创新题型;函数的性质及应用.【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}【点评】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.14.如图,在平面四边形ABCD中,,,,.若点E为边CD上的动点,则的最小值为
.参考答案:
15.已知{an}为等差数列,若a1=6,a3+a5=0,则数列{an}的通项公式为.参考答案:an=8﹣2n【考点】84:等差数列的通项公式.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{an}的公差为d,∵a1=6,a3+a5=0,∴2×6+6d=0,解得d=﹣2.∴an=6﹣2(n﹣1)=8﹣2n.故答案为:an=8﹣2n.16.设是定义在上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是
.参考答案:略17.某高中共有1200人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为
.参考答案:16;三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为.设该容器的建造费用为千元.(Ⅰ)写出关于的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的.
参考答案:21.解:(I)设容器的容积为V,由题意知故由于因此所以建造费用因此
(II)由(I)得由于当令所以
(1)当时,所以是函数y的极小值点,也是最小值点。
(2)当即时,当函数单调递减,所以r=2是函数y的最小值点,综上所述,当时,建造费用最小时当时,建造费用最小时19.已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.(Ⅰ)求⊙C的方程;(Ⅱ)设Q为⊙C上的一个动点,求的最小值;(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.参考答案:解:(Ⅰ)设圆心C(a,b),则,解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2(Ⅱ)设Q(x,y),则x2+y2=2,=x2+y2+x+y﹣4=x+y﹣2,令x=cosθ,y=sinθ,∴=cosθ+sinθ﹣2=2sin(θ+)﹣2,∴(θ+)=2kπ﹣时,2sin(θ+)=﹣1,所以的最小值为﹣2﹣2=﹣4.(Ⅲ)由题意知,直线PA和直线PB的斜率存在,且互为相反数,故可设PA:y﹣1=k(x﹣1),PB:y﹣1=﹣k(x﹣1),由,得(1+k2)x2+2k(1﹣k)x+(1﹣k)2﹣2=0因为点P的横坐标x=1一定是该方程的解,故可得同理,,所以=kOP
,所以,直线AB和OP一定平行略20.已知常数p>0,数列{an}满足an+1=|p﹣an|+2an+p,n∈N*.(1)若a1=﹣1,p=1,①求a4的值;②求数列{an}的前n项和Sn;(2)若数列{an}中存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列,求的取值范围.参考答案:【考点】8E:数列的求和;8H:数列递推式.【分析】(1)①an+1=|p﹣an|+2an+p,可得a2=|1﹣a1|+2a1+1=2﹣2+1=1,同理可得a3=3,a4=9.②a2=1,an+1=|1﹣an|+2an+1,当n≥2时,an≥1,当n≥2时,an+1=﹣1+an+2an+1=3an,即从第二项起,数列{an}是以1为首项,以3为公比的等比数列,利用等比数列的求和公式即可得出Sn.(2)an+1﹣an=|p﹣an|+an+p≥p﹣an+an+p=2p>0,可得an+1>an,即{an}单调递增.(i)当≥1时,有a1≥p,于是an≥a1≥p,可得an+1=|p﹣an|+2an+p=an﹣p+2an+p=3an,.利用反证法即可得出不存在.(ii)当时,有﹣p<a1<p.此时a2=|P﹣a1|+2a1+p=p﹣a1+2a1+p=a1+2p>p.于是当n≥2时,an≥a2>p.从而an+1=|p﹣an|+2an+p=an﹣p+2an+p=3an.an=3n﹣2a2=3n﹣2(a1+2p)(n≥2).假设存在2as=ar+at,同(i)可知:r=1.得出矛盾,因此不存在.(iii)当≤﹣1时,有a1≤﹣p<p.a1+p≤0.于是a2=|P﹣a1|+2a1+p=p﹣a1+2a1+p=a1+2p.a3=a1+4p.即可得出结论.【解答】解:(1)①∵an+1=|p﹣an|+2an+p,∴a2=|1﹣a1|+2a1+1=2﹣2+1=1,a3=|1﹣a2|+2a2+1=0+2+1=3,a4=|1﹣a3|+2a3+1=2+6+1=9,②∵a2=1,an+1=|1﹣an|+2an+1,∴当n≥2时,an≥1,当n≥2时,an+1=﹣1+an+2an+1=3an,即从第二项起,数列{an}是以1为首项,以3为公比的等比数列,∴数列{an}的前n项和Sn=a1+a2+a3+a4+…+an=﹣1+=﹣,(n≥2),显然当n=1时,上式也成立,∴Sn=﹣;(2)∵an+1﹣an=|p﹣an|+an+p≥p﹣an+an+p=2p>0,∴an+1>an,即{an}单调递增.(i)当≥1时,有a1≥p,于是an≥a1≥p,∴an+1=|p﹣an|+2an+p=an﹣p+2an+p=3an,∴.若数列{an}中存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列,则有2as=ar+at,即2×3s﹣1=3r﹣1+3t﹣1.(*)∵s≤t﹣1,∴2×3s﹣1=<3t﹣1<3r﹣1+3t﹣1.因此(*)不成立.因此此时数列{an}中不存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列.(ii)当时,有﹣p<a1<p.此时a2=|P﹣a1|+2a1+p=p﹣a1+2a1+p=a1+2p>p.于是当n≥2时,an≥a2>p.从而an+1=|p﹣an|+2an+p=an﹣p+2an+p=3an.∴an=3n﹣2a2=3n﹣2(a1+2p)(n≥2).若数列{an}中存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列,则有2as=ar+at,同(i)可知:r=1.于是有2×3s﹣2(a1+2p)=a1+3t﹣2(a1+2p),∵2≤S≤t﹣1,∴=2×3s﹣2﹣3t﹣2=﹣<0.∵2×3s﹣2﹣3t﹣2是整数,∴≤﹣1.于是a1≤﹣a1﹣2p,即a1≤﹣p.与﹣p<a1<p矛盾.故此时数列{an}中不存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列.(iii)当≤﹣1时,有a1≤﹣p<p.a1+p≤0.于是a2=|P﹣a1|+2a1+p=p﹣a1+2a1+p=a1+2p.a3=|p﹣a2|+2a2+p=|a1+p|+2a1+5p.=﹣a1﹣p+2a1+5p=a1+4p.此时数列{an}中存在三项a1,a2,a3依次成等差数列.综上可得:≤﹣1.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、方程的解法、数列递推关系、分类讨论方法、反证法,考查了推理能力与计算能力,属于难题.21.(本小题满分12分)已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.参考答案:解析](1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,∵覆盖它的且面积最小的圆是其外接圆.∴圆心是(2,1),半径是,∴圆C的方程是(x-2)2+(y-1)2=5.(2)设直线l的方程是:y=x+b.∵CA⊥CB,∴圆心C到直线l的距离是,即=.解之得,b=-1±.∴直线l的方程是:y=x-1±.略22.已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)若直线的极坐标方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国桌面板行业投资前景及策略咨询研究报告
- 2025年中国曲丝碗型刷行业投资前景及策略咨询研究报告
- 2025年中国放射医学图像工作站行业投资前景及策略咨询研究报告
- 日本独立工作管理制度
- 制造业公司企业管理制度
- 妇科门诊宫腔镜管理制度
- 公司母婴室安全管理制度
- 旅游安全工作管理制度
- 生物实验室仪器管理制度
- 大学生学校培训管理制度
- 北斗卫星导航发展及其的应用课件
- 过敏性休克应急预案演练记录表
- 第八章-三相异步电动机的电力拖动课件
- 工程施工停止点检查表
- 《灭火器维修》GA95-2015(全文)
- 高中美术素描教案(8篇)
- 市政工程监理规划范本(完整版)
- 国贸实验一进出口价格核算
- 幼儿园中班美术:《美丽的蝴蝶》 PPT课件
- 计算机组成原理-唐朔飞(完整版)
- 单片机芯片8279用法
评论
0/150
提交评论